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Abstract : We empirically characterize how automobile demand varies over geographic space

and how it affects the economic consequences of climate mitigation policies. We augment

a discrete-continuous choice model in ways that account for geographic distribution of in-

comes, public transit, and portfolio preferences, and show that our model outperforms a

naive random-coefficient model in explaining demand stickiness over geographic space. In

particular, the model allows us to resolve two empirical puzzles in Japan: Overall price elas-

ticity of demand for vehicle ownership increases with vehicle size; invariance of demand for

hybrid vehicles with respect to public transit density. The estimated model substantiates

the importance of this spatial demand heterogeneity for policy evaluation: Carbon tax has

a larger CO2-reducing impact in non-urban settings, yet the effect flattens out as the transit

density further declines as the vehicle demand becomes increasingly sticky ; Consequently,

the welfare loss from carbon tax is greatest in the lowest density areas; Eco-car sharing

can mitigate this welfare penalty while remaining equally effective; Feebates perform poorly

relative to either policy.

JEL Codes: H23, H31, L62, Q54

KeyWords: Automobiles, carbon emissions, carbon tax, control function, discrete-continuous

choice, energy efficiency, feebates, hybrid vehicle, portfolio effect, public transportation
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1. Introduction

Carbon dioxides (CO2) emissions pose a significant risk of climate change. Road trans-

portation accounts for a large share of the global CO2 emissions today. In theory, a carbon

tax on gasoline consumption can fully restore economic efficiency since it forces firms and

consumers to internalize the social cost of climate change in all economic margins: from

residential/employment choice to transport mode choice, and to vehicle ownership and uti-

lization. Economists have been increasingly aware, however, of the difficulties associated

with reducing carbon emissions from road transportation [see Anderson et al. (2011) or

Knittel (2012) for a review of the issues]. In the U.S., for example, vehicle miles travelled

nearly doubled from 1970 to 2009 while the fleet average fuel economy (of only new cars)

improved only at a moderate rate over the same period (Knittel, 2012). Associated with this

increase in vehicle miles is the rapid urban sprawl: i.e., urban development in geographically

sparse, low density areas (Glaeser and Kahn, 2010). The form of cities, roads, and public

transit networks we observe today is the result of this development, so is the demand for

vehicle transport [e.g., Beaudoin and Lawell (2018); Bento et al. (2005); Boarnet and Crane

(2001); Duranton and Turner (2011)].

The theme of this manuscript is an important question that arises from this observation:

How does automobile demand vary over geographic space? Addressing this question empiri-

cally is important, at least on three accounts. First, the question is of economic significance

by itself because we know relatively little about the geographic heterogeneity of automobile

demand, despite that there is a large literature on economic studies of automobile demand.

We are, for example, not sure how demand elasticities differ between urban, suburban, and

rural contexts, for what reasons — do they differ because of income, landscape, public tran-

sit, or other systematic differences in preference structures? Second, it matters for economic

efficiency because the economic impact of a (price-based) climate mitigation policy can be

highly spatially heterogeneous precisely due to this demand heterogeneity over space. The

key is the joint distribution of incomes, public transit networks, and preference structures

and their interactions over geographic space. For example, demand for vehicle ownership

and utilization is low in urban areas where a dense public transit network is available. This

makes automobile demand more price elastic, ceteris paribus. On the other hand, incomes

tend to be high in urban areas where abundant employment opportunities exist (even after

adjusting for the cost of living).1 This makes the demand less price elastic. Thus, the inter-

action between the two effects alone tends to generate substantial heterogeneity in demand

elasticity across geographic areas, so is the effect of a climate mitigation policy. Third, it is

1There is a large literature showing that real wages are not equalized across regions.
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important for equity reasons. Over the last few decades, there has been a growing interest

among environmental economists in the equity implications of climate mitigation policies

[e.g., Dorband et al. (2019); Fremstad and Paul (2019); Goulder et al. (2019); Grainger and

Kolstad (2010); Maestre-Andres et al., (2019)]. Most of the studies, however, examine the

regressivity of climate policies and do not pay sufficient attention to the joint distribution

of incomes, public transit, and preference structures over geographic space. For example,

efforts to reduce carbon emissions by forming a smart/compact city may raise the cost of

living in urban areas, forcing some of lower income populations to live in non-urban areas.

Even a moderate carbon tax may hurt these disadvantaged subpopulations severely, not only

because transportation costs represent a larger share of their incomes but also because they

may have no other means to travel.

With this general theme in mind, this manuscript estimates a spatially explicit model of

automobile demand in the discrete-continuous choice framework à la Dubin and McFadden

(1984), using spatially rich survey data in Japan. As in Train (1986),our model accounts for a

sequence of three choices: the number of vehicles owned, the class/type of each vehicle owned,

and the vehicle kilometers traveled (VKT) for each vehicle owned. What is new here is that

we incorporate three new aspects into the model and do so in a manner that is theoretically

consistent with both the theory of travel demand (Domencich and McFadden, 1975) and

the error-component formulation of mixed logit (Brownstone and Train, 1998). First, we

introduce portfolio considerations in a manner analogous to Gentzkow (2007) and Wakamori

(2015). That is, we explicitly model the correlation between choices of the first and the

second cars by adding the terms that capture utility from having a particular combination

of vehicles. Adding the portfolio effect allows us to model intricate behavioral responses

that seem quite important in our empirical context, which we shall turn to below. Second,

following the spirit of random-coefficient logit, we allow the parameters on (indirect) utility to

depend explicitly on a measure of public transit density.2 This formulation generates realistic

substitution patterns that are explicitly linked to public transit. For example, a consumer

who has a high valuation of fuel economy because her access to public transit is limited is

allowed to substitute to a less expensive alternative, such as a keicar, that has less but similar

fuel economy when the price a hybrid car is too high. Third, the resulting model produces

the high dimensional sample correction terms that enter the vehicle utilization equation. To

address it, we employ Dahl’s control function approach (2002). By this, we account for two

types of correlation in the VKT equation due to unobservables: one between the uses of

multiple cars and the other between car ownership and utilization. We estimate this model,

using a large, nation–wide internet survey we conducted in 2016. The survey contains a

2We explain how we construct this measure in Section 3.
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usable sample of approximately 100,000 households, and hence, we have a sufficiently large

subsample within each decile of public transit density. The covariates’ variations that come

with it allows us to estimate the demand parameters that vary by that density.3

Our modeling strategy is motivated, not only by the key theme of the manuscript dis-

cussed above, but also by our desire to resolve two empirical puzzles we observe in Japan.

First, Konishi and Zhao (2017) find that in Japan, the price elasticities of automobile de-

mand are smaller for small-sized vehicles than for large-sized vehicles. This is puzzling in

that low-income households tend to buy smaller cars, and hence, the demand for these cars

is expected to be price-elastic, in principle. Second, in our data (to be described below),

we observe that the demand for hybrid cars is virtually invariant with respect to the public

transit density. This is also puzzling because the demand for vehicle transport increases quite

sharply, so does the demand for fuel economy, as public transit becomes more sparsely avail-

able. As it turns out, the key to resolving both of these puzzles lies with the joint distribution

of income, public transit, and portfolio preferences over geographic space. Households in low

density areas tend to buy keicars4, which are cheap and fuel efficient, instead of hybrid cars,

which are more fuel efficient yet are more expensive, in combination with other cars. This

tends to generate some ‘stickiness’ of vehicle demand for keicars in low density areas. For

example, when the price of keicars increases, a consumer who prefers to own a combination

of a keicar and a regular car may continue to own the same combination by accommodating

this price increase by buying a cheaper regular car. This demand stickiness can reconcile

both puzzles as it implies that low-income households in low-density areas may inelastically

demand keicars. Hence, resolving the two puzzles essentially boils down to recovering the

structural parameters of our demand model for vehicle ownership and utilization that vary

by geographic space.

As with all analogous studies using household survey data [e.g., Bento et al. (2005),

Bento et al. (2009), Goldberg (1998), Train (1986), West (2004)], the identification of the

model parameters is challenging. We overcome this challenge by combining a set of control

function approaches. First, to address the endogeneity of public transit density and rental

prices in the vehicle ownership equation, we employ a version of the two stage residual

inclusion (2SRI) method à la Terza et al. (2008) and Wooldridge (2015), using the 1980

railway networks as instruments. We further strengthen our identification by exploiting

3Japan is known for its highly efficient public transit network. Yet, public transit is only sparsely dis-
tributed in most non-urban areas. In Tokyo, for instance, only 31.7% of the working population drives to
work (MLIT, 1998). This number is surprisingly small even compared to 65.7% in New York (FHWA, 2003).
In Toyama, a moderately populated prefecture in Japan, the share of the working population who drives to
work comes at 83.8% (MLIT, 1999). This number is close to what we observe in most U.S. counties.

4Keicar is an extremely small car segment with displacement levels of 660 cc or less. Keicars account for
roughly 20% of the total vehicle sales in Japan.
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the fact that the Japanese government implemented a variety of incentives for eco-friendly

vehicles since 2001. We use information on purchase year/month to adjust the rental prices

of all vehicles in each household’s choice set. Second, to control for correlations between

vehicle attributes and the error term in the vehicle utilization equation, we employ Dahl’s

control function approach. The use of Dahl’s approach requires instruments that vary at

the household level and affect vehicle purchase decisions, yet do not affect vehicle utilization

decisions directly. In our case, this is trivially satisfied because the vehicle characteristics of

all vehicles in the choice set enter the ownership choice while only those of the chosen car

enter in the utilization equation. The exclusion restriction is further strengthened by the

fact that we adjust the vehicle attributes of each consumer’s choice set based on her purchase

year/month. Lastly, in estimating the car utilization equation, we restrict the sample to those

who purchased the cars only after 2012. This allows us to remove the spurious correlation

that arise between our key variables and the unobservables due to the endogenous duration

of car holding.

The estimated model not only resolves the two empirical puzzles mentioned above, but

also produces a few new results that have not been documented (not extensively, at least)

in the literature. First, our household-level analysis indeed signifies the important role of

incomes, public transit, and portfolio considerations in explaining the geographic distribu-

tion of automobile demand. To demonstrate this point, we incrementally add to the demand

model the interaction terms that capture (a) public transit density and (b) portfolio consid-

erations, and compare each with the standard random-coefficient model that only accounts

for non-specified preference heterogeneity. We see that our model improves the predictive

power of the ownership shares of at least one car, hybrids, and keicars over geographic space

by a large margin. Second, with all these factors taken together, we show that the estimated

price elasticity of vehicle ownership is indeed smaller for keicars than for hybrid cars, overall

as well as by public transit density. Thus, our household-level elasticity estimates help us

explain the market-level estimates in Konishi and Zhao (2017). As we noted already, the key

is that our model makes consumer’s demand for automobiles ‘sticky’ for a certain subpopula-

tion — consumers who prefer a certain combination of cars tend to stick to that combination

in face of relative price changes. Third, Dahl’s control function approach indeed works well

in reducing bias due to sample selection. The polynomial sample-correction terms are jointly

highly significant, and both income and price elasticity parameters have reasonable signs and

magnitudes with the inclusion of these terms.

With the estimated demand system, we demonstrate the economic significance of spatial

demand heterogeneity for efficiency and equity considerations. To accomplish this, we con-

struct three counterfactual scenarios: (a) a carbon tax of $50 per ton of carbon emissions,
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(b) fuel-economy-based feebates (using the same social cost of carbon of $50 per ton), and

(c) a government-supplied hybrid-car-sharing platform. We also estimate policy impacts on

consumer welfare using Herriges and Kling’s (1999) approximation to the Small and Rosen’s

(1981) compensating variation formula. Our goal is to demonstrate the importance of spatial

demand heterogeneity for economic evaluation, not to simulate realistic equilibrium responses

to these policies. The latter is infeasible in our study because we lack data that would allow

us to model spatially explicit supply-side responses. Hence, for each scenario, we simulate

only the demand-side responses, assuming perfectly elastic supply (see Subsection 7.1 for

more discussion on this point).

Our simulation analysis deliver three important findings. First, carbon tax is far more

effective in reducing on-road CO2 emissions than feebates or ecocar sharing policies, yet

the policy impacts different economic margins differently over different geographic regions.

Second, there exists a large unexploited demand for n-household car-sharing, particularly in

moderately dense areas, where the magnitude of the policy impact becomes roughly compa-

rable to the carbon tax scenario. Third, carbon tax is estimated to induce a sizable welfare

loss, more so in low-density areas than in high-density areas, whereas the ecocar-sharing pol-

icy is estimated to induce some welfare gain in a manner analogous to the consumer’s gain

from a new product innovation. These results indeed highlight the importance of accounting

for spatial heterogeneity that arises from the intricate interaction of income, public transit,

and portfolio preferences. Car owners in urban areas are generally richer, prefer having a

smaller number of cars, and thus, have relatively inelastic demand for car ownership than

those in non-urban areas. On the other hand, car owners in non-urban settings have inelastic

demand for car utilization and have preferences for a mix of keicars with other cars, whose

demand is estimated to be highly inelastic, precisely due to low public transit availability.

Due to the mixed effects of these, each policy’s impacts on car ownership and utilization

tend to have a highly non-linear relationship to population density. Though not explored

fully, our results also suggest the potential for a welfare-improving policy mix: a carbon tax

in combination with a car-sharing platform in non-urban settings.

Our work complements three strands of literature: (a) empirical studies that investi-

gate the relationship between urban structures and demand for vehicle transport, either

using city-level observations [e.g., Levinson and Kumar (1997); Glasear and Kahn (2010)] or

household-level observations [e.g., Beaudoin and Lawell (2018); Bento et al. (2005); Boarnet

and Crane (2001); Train (1986); Gillingham (2014); Gillingham et al. (2015)]; (b) the eco-

nomic incentives for efficiently controlling emissions from mobile sources [see Knittel (2012)

and Anderson et al. (2011) for a comprehensive review on the topic]; and (c) empirical stud-

ies that estimate the discrete-continuous decision model on car ownership and utilization,
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with applications to the effect of gasoline tax [Bento et al. (2009), Train (1986), and West

(2004)], to the effect of CAFE standards [Goldberg (1998)], and to the effect of feebates

[D’Haultfoeuille et al. (2014)]. Our work is probably most closely related to Gillingham

(2014) and Gillingham et al. (2015), which estimate the geographically explicit elasticities

of driving with respect to gasoline prices in the U.S. context. To the best of our knowledge,

however, none has explicitly examined the role of income, public transit, and portfolio con-

siderations in understanding the spatial heterogeneity in demand for vehicle ownership and

its implications for the design of a carbon-reduction policy or the environmental outcomes

of car-sharing in a real empirical context.

2. A Statistical Overview of Vehicle Demand in Japan

We start by presenting a statistical overview of the relationship between access to public

transit and vehicle-related household choice in Japan. For ease of visualization, we report

household choice against a single composite index of public transit accessibility. We con-

struct this index by an (unweighted) average of two district-level measures of railway transit

network (incl. cable cars, surface rails, and subways). The first measure is the kilometers

of railways per square kilometer and is intended to measure ease of access to destinations

via railways. The second is the percentage of the habitable area within a district that has

at least one train station within 15-min walking distance and is intended to measure ease of

access to railways. We do not include the bus network in this index because in Japan, bus

network is highly developed and even rural residents have access to a bus station within a

walking distance. To confirm, Figure 1-(A) displays two scatter plots: the composite index

and a similar index using bus network, both against the population density using district-

level observations. The figure demonstrates that the composite index using railways has an

increasing, but non-linearly relationship to population density while the index using buses

has very little geographic variation and its inclusion would misleadingly overstate public

transit accessibility. Hence, we use this index as the measure of public transit density.5

Figure 2 plots (A) the number of cars owned, (B) monthly vehicle kilometers traveled

(VKT), (C) fuel economy ratings, (D) household income, (E) share of hybrid cars and “ke-

icar”, and (F) share of vehicle portfolio, all against public transit density.6 7 In line with the
5We think that the frequency of service would give us a more reliable measure of public transit accessibility

in case of bus service. Unfortunately, we do not have access to such data. However, we have a sense that the
frequency of bus service would generate essentially the same geographic variation as our composite measure.

6We have detailed information on up to two most frequently used vehicles each household owns. Only
about 5% of households own three or more vehicles. Hence, we use the sum over two cars for VKT and the
(unweighted) average for fuel economy ratings, the hybrid vehicle shares, and the keicar vehicle shares. In
figures are the averages of these over households.

7“Keicars” are extremely small passenger vehicles with displacement of 660 cc or less. They are highly
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theory and the findings around the world, vehicle ownership rate, VKT, and fuel-economy

ratings decline sharply with public transit density. There is also a sign of self-selection:

Only households with high enough demand for driving own cars, and thus, an average VKT

tends to be high in the most dense area despite its public transit availability. Interestingly,

however, demand for hybrid vehicles does not seem quite responsive to the density of public

transit. Why don’t households with limited access to public transit not own hybrid vehicles,

despite their demand for driving seems twice as high as those in high density areas?8

A key to resolving this puzzle lies with the fact that there is a large gain in fuel economy

by downsizing cars (Knittel, 2011). Households in low density areas tend to buy small-sized

vehicles, that are both cheaper and more fuel efficient, for daily transportation. Thus, the

share of keicars rises sharply with a decline in public transit density. Combined with the

fact that average household income is lower in low density areas, the figure leads us to

an observation that low-income households in low density areas are buying low-cost cars

that offer high fuel-economy performance. This may still come as a surprise, though. Low

density areas tend to have much wider roads and higher rates of traffic accidents. Thus, there

should also be a gain for consumers from up-sizing cars. Resolving the puzzle, therefore, boils

down to identifying the essential trade-off consumers make over fuel economy, size/safety,

acceleration, and price of a vehicle, and how these trade-offs differ by income and public

transit availability.

In considering this trade-off, our data also point to another important economic margin,

which may become critical in identifying the demand parameters. Car owners rarely own two

vehicles of the same type. Hence, households seem to make portfolio considerations in buying

a vehicle rather than considering each vehicle in isolation. Since only 6% of households in our

data own three or more cars, we consider the portfolio effect of two cars. In our data, of those

who own two (or more) cars, only 36% own the same type of vehicles. The remaining 64% own

a combination of either regular-keicar (24.5%), regular-minivan (16.3%) or keicar-minivan

(23.2%). What seems critical for our empirical analysis is that such complementary portfolio

holdings also vary sharply with the density of public transit. Figure 2-(F) demonstrates

that the share of households who own any combination of different vehicle types increases

popular in Japan. Keicars account for roughly 30% of domestic car sales in Japan. The Japanese government
offers a variety of tax incentives for these vehicles. As in Figure 2, we use the (unweighted) average over
the two most frequently used cars for ownership share and car price.

8Some may argue that the share of hybrid cars is low in low density areas because the fuel economy of
hybrid cars declines sharply in non-urban areas. This is not true, however. The Japanese hybrid cars do
actually better in suburban conditions than in urban conditions. The primary disadvantage of hybrid cars is
on highways — hybrids’ fuel economy does decline sharply there. However, if this were the primary reason,
then we should also expect low demand for keicars in low density areas — keicars do not do well either on
highways either not only in terms of fuel economy but also in safety. But as shown below, demand for keicars
rises quite sharply in place of hybrid cars. Hence, we must seek a different explanation.
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as the public transit density declines, and the share of those who hold a keicar and another

vehicle type (i.e., either regular or minivan) increases by even a larger margin. Whether

this phenomenon can be explained purely by geographic or household-level variation or by

explicitly accounting for portfolio preferences is another important empirical question, which

we incorporate into our empirical investigation.

3. The Empirical Model

There is a large literature in transportation research that empirically examines consumer’s

vehicle ownership and utilization in the spirit of the continuous-discrete choice framework

following Dubin and McFadden (1984). In that literature, consumer’s choice is modeled as

a two-stage decision process. In the first stage, the consumer chooses whether to own a

car or not, and if she does, which type of car to own. In the second stage, the consumer

chooses how much to drive over a given period of time. Our empirical framework follows

this tradition, but extends it in several important ways.

Vehicle Ownership: We posit that consumers make a trade-off between money spent on

buying a car versus the utility of owning and driving that car, as in the conventional literature

[e.g., Bento et al. (2009), Berry et al. (1995, 1999), Goldberg (1998), West (2004)]. Thus,

consumer i’s (indirect) utility from ownership of vehicle portfolio j in location s consists of

two economic components, the expected utility from net income and the expected utility

from vehicle ownership and utilization:

uijs = ρ ln(yi − rij) + vijs(Xi,Zj, Sis) + ϵijs, (1)

where yi is i’s household income, rij is the annual rental price of vehicle ownership for car j

for household i, and vijs is consumer i’s expected utility from owning alternative j, and ϵijs

is a pure stochastic error term distributed independently and identically across households,

alternatives, and locations. vijs is a component that captures correlation across choices

and heterogeneity across households due to household-specific attributes Xi, choice-specific

attributes Zj, or location-specific factors Sis, some of which are unobservable (stochastic).

Now, let us discuss our specification of the second ownership utility term vijs. Let j = 0

be an “outside option”: i.e., not owning any vehicle. Naturally, consumers who choose this

option would use public transportation for daily transport mode. Because this “index of de-

sirability” vi0s summarizes the maximal utility from sub-trip decisions conditional on owning

no car (Domencich and McFadden, 1975), vi0s (not ui0s) should, in principle, depend on the
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quality of public transportation (which is a component of Sis). Given the additive separa-

bility we assume in (1), we can re-define the second term as the utility difference relative to

the no-car option, vijs − vi0s, so the term now includes the value of public transportation.

We assume that E[vijs − vi0s|Xi,Zj, Sis] has the following linear-in-parameter structure:

E[vijs − vi0s|Xi,Zj, Sis] = δ′isZj = (δ0 + δ′1Xi + δ′2Sis)Zj.

This specification conforms to a natural economic intuition that the marginal utility of a

vehicle attribute varies by household as well as geographic characteristics. On the other

hand, we can re-write this so it is expressed as the error-component formulation:9

δ′isZj = (δ0 + δ′1Xi)Zj + δ′2SisZj = ϕij(Xi,Zj) + ξijs(Sis,Zj).

Thus, our econometric model is amenable to two interpretations that are mathematically

equivalent. One is the random-coefficient interpretation: the marginal utility from a vehicle

attribute depends on household-specific and location-specific factors (such as access to public

transportation). Another is the error-component interpretation: the ownership value of a

particular alternative j to a consumer depends on the consumer’s underlying preferences

for certain types of vehicles. Such consumer preferences depend naturally on household-

specific and location-specific factors because the ownership value, by definition, incorporates

the value of sub-trips the consumer would make when she owns the car relative to the

case of having no car (Domencich and McFadden, 1975). As discussed in Brownstone and

Train (1998) and McFadden and Train (2000), this error-component structure can generate

flexible substitution patterns (e.g., any type of nested logit as a special case), allowing us

to alleviate the “independence from irrelevant alternatives (IIA)” property. Because we

include a rich set of covariates in Xi and Sis, our model can flexibly capture sufficiently

rich covariance structures of the error components, E[ξ′ijsξijs], underlying true substitution

patterns. Furthermore, although the parameter on net income ρ is not allowed to vary

by household, the income and price elasticities of demand still differ across households since

∂u/∂y = ρ/(y−r) and ∂u/∂r = −ρ/(y−r). These demand elasticities also depend on Xi, Zj,

and Sis, in general, because the consumer demand is a non-linear function of observables.

Portfolio Effect: Our discussion in Section 2 signifies the importance of accounting for

preferences for particular vehicle portfolios that may vary over geographic space. Hence, we

augment the above model by allowing for the dependence of choices across multiple vehicle

9I am slightly abusing the term “error component” here. In the literature, the term “error component”
refers to the stochastic component of the empirical model. In our specification, the second term ξijs contains
both stochastic and non-stochastic components.
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holdings. Specifically, we follow Gentzkow (2007) and Wakamori (2015) and define consumer

i’s utility from owning a pair of cars j and k as follows:10

ui(j,k)s = ρ ln(yi − rij − rik) + vijs + viks + Γ(j, k;Xi, Sis) + ϵi(j,k)s, (2)

where Γ(j, k;Xi, Sis) is the portfolio-effect term, which captures the idea that households

derive utility from owning a particular combination of vehicle types. For example, households

with children may prefer owning a minivan for recreational use, yet may prefer owning a

sedan or keicar for daily commuting use. As in Wakamori (2015), we consider three mutually

exclusive sets of vehicle types: i.e., keicars K, sedan/regular cars R, and minivans M. Then

the portfolio effect is given by

Γ(j, k;Xi, Sis) = κ′
(j,k)xis,

where xis denotes a vector of characteristics of household i in residence s (incl. constant)

and κ(j,k) is the combination-specific parameter for a pair (j, k).

There are several advantages of modeling the portfolio considerations this way. First, as

discussed in Wakamori (2015), the approach does not assume products are either comple-

ments, substitutes, or independent, and instead, allow the estimates of parameters to flexibly

capture complementarity patterns observed in the data. Second, we can estimate this model

using conventional conditional logit routines available in most statistical packages. Lastly,

this formulation exploits an important property of mixed logit: an analog to nested logit of

any complexity can be obtained by adding interaction terms with a set of dummies represent-

ing the nests (Brownstone and Train, 1998). In eq. (2), we are just adding a set of dummies,

each representing a particular portfolio, and then, interacting each of these dummies with

household-level or geographic-level observables. The former essentially works the same as

having a nest for each vehicle portfolio while the latter works as allowing the correlation

across choices within the nest to depend on observables.

Vehicle Utilization: Following the convention [e.g., Bento et al. (2005), Bento et al.

(2009), Goldberg (1998), West (2004)], we assume that monthly driving distance m (in log)

of consumer i who lives in area s and who owns vehicle j is:

lnmijs = αis ln(yi − rij) + βs ln pij + λ′Wijs + ηijs, (3)

where yi and rij are as defined above, pij is the operating cost of utilization per unit of driving

10In this study, we restrict consumer’s choices to two vehicles per household since we have detailed infor-
mation only on two most frequently used cars. As discussed in Section 2, only 6% of the households in our
data hold three or more cars.
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distance for car j for household i, Wijs is a vector of household, vehicle, and geographic

characteristics, and ηijs is the error term. The primary parameters of interest are the income

and price elasticities, αs and βs, of vehicle utilization. We allow these parameters to depend

on the geographic characteristics Sis:

αs = α + γ′
αSis; βs = β + γ′

βSis.

In contrast to eq. (1), eq. (3) is the (reduced-form) equation, and thus, without explicitly

allowing for interaction terms, the income/price elasticity will be constant across areas.

It is known that OLS regression of eq. (3) would generally give us biased estimates of

parameters due to sample selection because we observe each consumer’s driving behavior

only for the car model chosen, but not for car models that had not been chosen. To see this

in our empirical setup, note that we can write vijs = E[v(mijs)|Xi,Zj, Sis] + eijs, and hence,

the error term ϵijs in eq. (1) is confounded with another error term eijs, forming the joint

error term µijs ≡ eijs + ϵijs. Consequently,

E[ηijs|Xi,Zj, Sis, j is chosen]

= E[ηijs|Vijs + µijs ≥ Viks + µiks for all k] ̸= 0

where Vijs is the observable part of the indirect utility, and the last inequality follows because

ηijs contains some of the information in eijs, the unobserved part of utility from driving car

model j. Simply put, consumers would enjoy driving cars of their favarites and not so much

for others.

To address this selection problem, previous studies either assumed a joint distribution

of errors (µijs, ηijs) or used a selectivity correction à la Dubin and McFadden (1984). The

former is known to place severe restrictions on the selection process, while the latter is known

to become imprecise or infeasible when there are many alternatives in the first stage decision.

We instead use Dahl (2002)’s control function approach to correct for this selection bias in

the case of many alternatives. Specifically, Dahl showed that, in case of high-dimensional

alternatives, eq. (3) can be consistently estimated using estimates of individual purchase

probabilities:

lnmijs = αs ln(yi − rij) + βs ln pij + λ′Wijs +
J∑

j=1

Mij × Tij(Pi0, Pi1, . . . , PiJ) + υij, (4)

where Tij(·) is some unknown function of purchase probabilities Pi1, . . . , PiJ and Mij is its

parameters. Dahl suggests that, in practice, we may include only a few probabilities such as
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the probabilities of the first-best choice, the second-best choice, and the outside option. We

follow this advice in our estimation.

We can incorporate the portfolio effect into the sample correction terms in the vehicle

mileage equation (4) by slightly modifying our notation. Let J1 and J2 be the sets of products

for her first and second cars, respectively. Let us augment J2 by including ‘zero’, an option

to own no second car. Adjoining these two sets and an outside option to own no car, we

create the joint choice set J , which contains 1 + #J1 × #J2 alternatives. The consumer

chooses an alternative j from this adjoined set. That is, one may choose to own no car (0, 0),

choose to own one car (j1, 0), or choose to own two cars (j1, j2). With a slight abuse of the

notation, (j, k) in place of j, the model described by (1) and (4) is essentially intact.

There is one subtle, yet important, issue in estimating the VKT regression (4) — we

observe VKT for each of the vehicles owned, and hence, (4) must be estimated separately

for each vehicle, accounting for that vehicle’s attributes. Here, the difficulty is that the

households who own multiple cars are likely to decide on how often to use one vehicle jointly

with other vehicles. Consequently, the utilization levels are likely to be correlated across

car holdings. The literature to date seems silent as to how to address this issue. In her

seminal work, Goldberg (1998) estimates the VKT regression using observations on newly

purchased cars only, ignoring this correlation in vehicle utilization. Bento et al. (2005)

instead use the VKT per vehicle, averaged over vehicles owned, as a dependent variable,

excluding vehicle-specific regressors from the list of independent variables.

In the context of the present paper, the policy impact on the second car’s VKT is quite

important. Hence, we address this issue as follows. We estimate the VKT regression, pooling

all VKT observations on the two most frequently used cars, with a dummy indicating a

second car. This ensures that the same sample correction terms enter the VKT regression

for the two cars owned by the same household, yet accounting for the fact that one of

the observation is on the second car. This allows multiple-car owners’ vehicle utilization

decisions to be correlated across their vehicle holdings, either through observable household-

level characteristics or through (unobservable) selectivity terms. Because our model of car

ownership accounts for portfolio effects, the selectivity correction terms in (4) control for

the unobservable correlations that are specific to the same household who decide to own a

particular combination of cars.11

11One could, instead, estimate the seemingly unrelated regression or the second-car’s VKT equation in-
dependently. Both approaches resulted in parameter estimates that are hard to interpret. For example, the
estimated elasticity on net income was negative. We would think that this occurs precisely because of the
substitution in vehicle utilization between the two cars. The households with high incomes primarily drive
the first car for daily use, keeping the second car only for luxurious use. The households with low incomes,
on the other hand, are likely to own the second car for primary use, and hence, they drive the second car
more. The estimates may be simply capturing this correlation.
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4. Data

Our study relies on a large cross-sectional sample of households from a nationwide internet

survey conducted in November 2016 in Japan. In designing the survey, we aimed for two

goals. The first is to obtain a sufficiently large sample, with variations in household-level

characteristics, for each population density decile. This is essential for our study because

we need comparable households to separately identify the demand parameters that vary by

income and public transit: i.e., those with different levels of income, yet with the same level

of access to public transit as well as those with the same level of income, yet with different

levels of access to public transit. The second is to collect sufficiently detailed information on

each household’s vehicle ownership and utilization that is comparable to the U.S. Consumer

Expenditure Survey (CES). In particular, we aim to collect information such as the number

of vehicles, the vehicle type (fuel economy, engine/fuel type, horsepower, make, size, weight,

vintage), the year/month of purchase, and the vehicle kilometers traveled since the purchase.

Such detailed information on vehicle ownership and utilization is not available in national

consumer surveys in Japan.

The survey was administered under the contract with Nikkei Research Inc. to the pool of

registered internet monitors. The survey resulted in a sample of 105,000 usable respondents

with complete responses. As with other internet-based surveys, we did not have direct control

over the sampling process. Our usable sample, however, covers a sufficiently large number

of households in every prefecture, with sufficient variation in key socioeconomic variables

such as age and income. In the Online Appendix (A), we compare our sample distribu-

tion against the population distribution by prefecture. The geographic distribution of our

survey respondents by prefecture is sufficiently close to the population distribution, though

populated prefectures (e.g., Tokyo and Kanagawa) are over-represented while less populated

prefectures (e.g., prefectures in Kyushu region) are under-represented. As expected, average

household incomes in our sample are slightly higher than in the population for most prefec-

tures, although we do not see significant differences in average household sizes. Our results

may be somewhat biased toward households with relatively higher incomes.12

We supplement the survey with the data from various sources. First, we use the GIS

datasets on city boundaries, bus stops, train stations, train networks, hospitals, road length,

and public parks from the National Land Numerical Information Download Service, made

available online by the Ministry of Land, Infrastructure, and Transportation (MLIT). We

12There is a large literature in environmental economics, examining the extent of bias in demand estimation
that may arise due to the internet-based survey. The results are mixed. Comparing the internet survey versus
other modes of survey, some (Lindhjem and Navrud, 2011 and Nielsen, 2011) report no or small bias while
others (Boyle et al., 2016) report a non-negligible bias.
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use the coordinates of train stations and the line data on train networks to construct the

composite measure of public transit density at the ‘city-district’ level (see Section 2). Our

definition of ‘city-district’ follows that of the Ministry of Internal Affairs and Communications

(MIAC). As of 2018, there are 1,724 city districts in Japan. Second, we also use the car

catalog data from the carsensor.net, one of the largest online car retailers in Japan. The

survey respondents are asked to provide detailed information on each of the cars they own

(up to their second car): i.e., model year/month, purchase year/month, make, model name,

displacement level, curb weight, and mileage. We use these to match their cars with those

listed in the carsensor catalog to obtain other vehicle characteristics such as fuel economy

ratings, horsepower, size, and transmission. Third, we use the district-level population

estimates provided by the National Institute of Population and Social Security Research

(IPSS). Lastly, we also obtain a measure of prefecture-level road congestion from MLIT,

regional consumer price and gasoline price series from the Ministry of Economy, Trade and

Industry (METI), historical discount rates from the Bank of Japan, and district-level garage

certification regulations from Keicar Information Center. Detailed descriptions on how we

define our choice set (for vehicle ownership) and key variables used in the manuscript are

available in the Online Appendix (B).

Table 1 reports the means and standard deviations of key variables by population den-

sity. The table confirms substantial variations both within and across population density

quintiles, which we exploit in our estimation. First, all measures of public transit sharply

decrease as population density declines. Not only that, we have substantial variation in these

measures within each density quintile, and interestingly, more so in low-density quintiles: co-

efficients of variation are 0.57, 0.45, 0.45, 0.28, and 0.21 for the lowest, 4th, 3rd, 2nd and the

highest population densities. This is in sharp contrast to household characteristics. Average

household incomes decline as population density declines, yet the coefficients of variation stay

roughly the same across all quintiles. The same is true with household size. This ‘within’

variation in public transit measures helps us identify the effects of public transit on vehicle

ownership/utilization. Second, as we have seen, the rate of car ownership rises quickly as

population density declines, possibly in response to declines in public transit availability.

Interestingly, however, the coefficient of variation for car ownership declines as population

density declines. Instead, the coefficient of variation for the number of cars owned rises,

from 0.33 in the highest density quintile to 0.52 in the lowest density quintile. This point is

also closely related to our next observation. Third, we observe a smaller variation in vehicle

utilization than vehicle ownership: after taking logs, the coefficients of variation for monthly

VKT range from 0.17 to 0.19 for the first car (= most frequently used car), and from 0.18 to

0.24 for the second most used car. Combined, these two observations are suggestive of the
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tendency that households absorb the impact of public transit (un)availability by adjusting

the number of cars owned rather than by adjusting the vehicle utilization. We take this as

suggesting that it is indeed important to account for correlation between ownership decisions

and utilization decisions. Lastly, the sample characteristics of the first car seem to differ sub-

stantially from those of the second car. The second cars are cheaper, more fuel-efficient, and

smaller on average in virtually all density quintiles (while coefficients of variation are similar

between the first cars and the second cars). Interestingly, for their first cars, households in

low density areas are more likely to own hybrid cars than in high density areas. Yet, the

opposite is true with their second cars. These points seem to re-confirm the existence of the

portfolio effect discussed in Section 2.

5. Estimation and Identification Strategy

The discrete-continuous choice model we develop in Section 3 is estimated in two steps.

In the first step, we estimate the discrete choice model, assuming the form of indirect utility

as in eq. (2) and the Type-I extreme value distribution for ϵ. For this step, estimation

is done by Stata’s alternative-specific conditional logit routine. In the second step, we

estimate the VKT regression in eq. (4), pooling all VKT observations for all cars owned

by households in the sample. In this step, we use polynomials of predicted probabilities

from the first step as selection control terms as in Dahl (2002). We experiment with a

polynomial of up to third degree, using the probabilities of the chosen, the no-car, the

highest-likelihood, the second highest-likelihood, and the lowest-likelihood options. Based

on the sign/significance of key variables (i.e., net income and cost per kilometer of driving)

as well as their robustness to varying levels of controls, we end up using the second-degree

polynomials of the highest, the second-highest, and the lowest probabilities. Furthermore,

with this approach, the conventional covariance estimator is biased (Dahl, 2002). Hence, we

use bootstrapped standard errors, with 500 draws, for inference.

Because we use one-shot household survey for both steps, the identification of the pa-

rameters relies on cross-sectional variation at both the household and the district levels in

economic/geographic variables. Though this poses a challenge in identification, this is typ-

ical of studies that estimate the discrete-continuous choice model of car-holding decisions

using survey data (see Goldberg, 1998, Bento et al., 2005, and Bento et al., 2009). In the

literature, four identification challenges are discussed: (1) endogeneity of measures of public

transit and (2) endogeneity of rental price of car ownership in the first-stage choice of car

ownership; (3) endogeneity of operating cost of car utilization (due to sample selection) in

the second-stage choice of car utilization. In addition to these, there is an issue with the
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endogenous duration of car ownership. Below, we discuss each of these and our strategies to

address them in order.

Public transit: In the literature, it is often assumed that public transit is predetermined

prior to their car-holding decisions. Indeed, these measures are known to work better than

other forms of urban structures (see Bento et al., 2005). However, there is still a concern

that households’ intrinsic preferences for car holdings may be correlated with measures of

public transit — households may make residential choice in conjunction with choice of car

holding. To address this concern, we exploit the idea that the public transit network in

the past is generally a good instrument (e.g., Duranton and Turner, 2011). There are,

however, two limitations with the conventional IV approach in this context. First, the

correlation between the public transit measure and the unobservable errors makes all of

its interaction terms endogenous. Hence, the conventional IV strategy would require a

large number of instruments. Second, it is known that a ‘plug-in’ 2SLS method produce

inconsistent estimates in nonlinear models such as this. Terza et al. (2008) and Wooldridge

(2015) discuss how an alternative two-stage residual inclusion (2SRI) method can overcome

these limitations. In our estimation, we further exploit the parsimonity of the 2SRI approach

using the 1980 railway networks as instrument (see Figure 1-(B)) to addressing virtually

all endogeneity concerns that arise through consumer’s endogenous residential decision. Our

Online Appendix (C) explains how this is accomplished.

Rental price of car ownership: Studies on the automobile demand estimation are

often concerned with the endogeneity of car prices. There may be product attributes con-

sumers see but researchers do not, such as brand images, styles, and non-price incentives.

Since they are demand-shifters, they may as well be correlated with car prices. This concern

is less serious in our study because ours is based on household data and car prices are mostly

determined at the market level. In addition, we include make, car-type, fuel-type, and used-

car dummies to control for unobservable product characteristics. This identification strategy

is analogous to Goldberg (1998) and Bento et al. (2009). However, individual households

also negotiate prices at the dealer level. Hence, there may be some measurement error in our

price variable that may be correlated with vehicle attributes at the local level. To take care

of the concern, we use time-varying car-related tax incentives as exogenous price shifters.

Specifically, we use information on purchase year/month to adjust the rental prices of all

vehicles in each household’s choice set. The Japanese government implemented a variety of

incentives for eco-friendly vehicles since 2001 [see Konishi and Zhao (2017) for more detail].

This not only gives us exogenous price variation, but also implicitly restrict each household’s

choice set.

Sample selection: For the second-stage choice of car utilization, we essentially have two
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identification issues. Both issues are closely related to the endogeneity of p, i.e., the operating

cost of vehicle utilization. The first issue concerns the sample selection we discussed in

Section 3. Because the fuel cost per kilometer is a function of the fuel economy rating of the

car chosen, this variable is clearly correlated with unobservable demand for driving distance.

To control for this, we use Dahl’s control function approach. This approach requires the

exclusion restriction: i.e., we need instruments that vary at the household level and affect

vehicle purchase decisions, yet do not affect vehicle utilization decisions directly. In our

case, this is trivially satisfied. Vehicle utilization in eq. (4) depends only on the attributes

of the car that is actually owned, but not those of alternatives, while vehicle ownership

choice in eq. (2) depends not only on the attributes of the chosen car but also on those of

the other alternatives. Previous studies essentially use the same argument in implementing

Dubin-McFadden type correction. The identifying condition is further strengthened by the

fact that we use the prices of alternative vehicles actually observed at the time of purchase

instead of using contemporaneous values observed today, as discussed above.

Duration of car ownership: The second identification issue for the vehicle utilization

regression concerns the duration of car ownership. The problem here is that those who own

cars longer tend to be those with low incomes and own cars with low fuel economy ratings

(both because cars sold in the past tend to be fuel-inefficient and because fuel-efficient cars

tend to be expensive), while at the same time, these households continue to hold cars despite

their low incomes precisely because they have high demand for driving. Hence, households

who hold the same car for a long time tend to be those with lower incomes and higher

costs of vehicle utilization. This results in spurious correlations that bias the parameter

estimates in the opposing direction — i.e., negative correlation between net income and

VKT and positive correlation between the cost of driving and VKT. Our first-stage model

of car ownership allows us to account for the economic margins that affect “whether or not”,

“how many”, and “what type of cars” to own, but not “how long” to own. Naturally, the

selection correction terms cannot control for the endogeneity that arises from the duration of

ownership. To address this concern, we restrict the observations to those on cars purchased

after 2012.

6. Estimation Results

6.1. Vehicle Ownership

We first report on the first-stage discrete choice model of car ownership in Table 2.

Three sets of results are reported in the table: The models without portfolio effects, with

portfolio effects, and with portfolio effects and the 2SRI controls. For each model, the
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first row exhibits the estimates of the mean parameters for our key variables while the

second and the third columns present their interaction effects with transit availability and

household size. These interactions allow us to account for cross-region as well as within-

region heterogeneity in demand for car ownership. The estimated model also includes make

dummies (Toyota, Honda), a used-car dummy, fuel-type dummies (hybrid, diesel), vehicle-

type dummies (keicar, minivan), a garage certificate requirement dummy as well as their

interactions with metropolitan dummies to tease out the effects of unobserables.

Virtually all parameters are statistically highly significant, and their signs are consistent

with economic theory as well as previous studies that estimated similar models. First, the

parameter on the logged net income is significantly positive, which implies that consumers

with higher incomes are more likely to own cars and that consumers prefer cheaper cars, hold-

ing all else constant. Second, the mean parameter on the fuel cost per kilometer (Japanese

yen per km, YPK) is significantly negative, which implies that consumers on average value

fuel economy. However, its interaction terms suggest that consumers with access to transit

density or with large family tend to care less about fuel economy (even after controlling

for vehicle size and vehicle types). Third, consumers on average prefer high acceleration.

Interestingly, consumers with large family size tend to value acceleration much less. Lastly,

though not reported, the keicar dummy is significantly positive, whereas diesel and hybrid

car dummies are significantly negative. The Japanese consumers thus prefer keicars over

regular gasoline cars, yet prefer gasoline cars over diesel or hybrid cars. This occurs be-

cause in Japan, diesel cars are not popular as they are often perceived as unsafe (due to its

low ignition temperature) or unclean (due to its high sulfur content before desulfurization

process).

There is one anomaly that may seem at odds with previous studies in the U.S. — the

mean parameter on car size is significantly negative, implying that in Japan, consumers on

average value smaller cars. Note, however, that we obtain these estimates after controlling

for the vehicle types (i.e., keicars, minivans etc) and portfolio effects, which also vary by

household size. Hence, the negative sign on car size should be capturing the preferences for

the compactness of vehicles within, but not across, vehicle class. Our interpretation therefore

is that because the roads and parking spaces are narrow virtually everywhere in Japan (even

in rural areas compared to roads in U.S.), consumers on average prefer smaller cars, given

their preferred vehicle class. This is consistent with the findings in Konishi and Zhao (2017).

Table 2 also signifies the importance of accounting for portfolio considerations — both

mean and interaction parameters on many of the portfolio terms are statistically significant.

The mean parameters on keicar combinations (except on keicar -keicar) are significantly

positive, suggesting that consumers, on average, value the keicar combinations more than
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the regular-regular combination, which we take as the base combination. However, their

interaction terms with public transit is significantly negative and economically large. It

implies that (combined with the household size interaction terms) average households in

non-urban areas value the keicar combinations more than the base combination. Thus,

these estimates generate the stickiness of consumer demand to keicars in non-urban areas,

either held as a single car or as a combination with other types, confirming the empirical

patterns we observe in Section 2. Essentially the same goes for minivan combinations

(regular-minivan, minivan-minivan). The mean parameters on minivan combinations are

positive and statistically significant. Yet, their interaction terms with public transit and

household size are statistically significant and have the same signs and magnitudes as keicar

combinations. The results are consistent with the idea that consumers adjust their vehicle

portfolios according to the households’ needs. It may seem counter-intuitive, however, that

the value of any combination (relative to the base) decreases with household size. But this

is only after conditioning on the value of vehicle size, which is estimated to increase with

household size. Thus, we interpret the result as suggesting that consumers with a larger

household size do prefer owning a larger car, but do not necessarily prefer a family-car

portfolio (e.g., minivan-minivan) over a regular-car portfolio.

To gauge the importance of accounting for preference heterogeneity over geographic space,

we also compare the predicted shares from alternative empirical models against the observed

shares by transit density. The first is our full model (the model with spatial interactions and

portfolio effects) and the second is the conventional random-coefficient (RC) logit (the model

that does not account for spatial heterogeneity or portfolio effects). Figure 3 reports the

results of this exercise for three types of ownership: Ownership of any car (panel A), hybrids

(panel B), and keicars (panel C). Hence, the figure evaluates the predictive performance on

two economic margins: whether or not to own a car and which type of car to own. Note that

in these figures, we report on the unconditional ownership shares — i.e., not conditioned on

having a car.

As shown in the figure, the naive RC logit fails to predict all ownership shares by a large

margin. We also see a large swing in the prediction errors — i.e., it tends to understate

all types of ownership shares in low-density areas whereas overstating them in high-density

areas. In contrast, our full model predicts the car ownership share quite precisely for all

transit density levels. Importantly, the panel B and C demonstrate that our model does

a far better job of predicting the ownership shares of hybrids and keicars, allowing us to

explain the empirical patterns discussed in Section 2. The accuracy of prediction on these

two margins is quite important in simulating the counterfactuals policies in Section 7.
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6.2. Vehicle Utilization

Next, we turn to the vehicle utilization regression. Our focus is on demand elasticities

with respect to (net) income and operating cost, and on the influence of public transit

density on these elasticities. The first four columns of Table 3 report the results without

the congestion variable interacted with the key variables: income and operating cost (in

log). The next four columns include these interaction terms. We estimate each of these

regressions with varying levels of controls: metropolitan dummies and selection correction

terms. Though the parameter estimates are not reported, all regressions control for other

vehicle characteristics (fuel type and car type dummies), demographic characteristics (age,

household size, marital status, number of cars owned, work status, distance to work, years

of education) and urban structures (district-level population density, access to hospital,

and access to public parks). As discussed in Section 5, we only report the results with

the second-degree polynomials of the highest, the second highest, and the lowest estimated

choice probabilities for selectivity correction.

The estimate of the mean income elasticity is always positive, but become larger and

more statistically significant when we include the congestion interaction term. This makes

intuitive sense. When a household’s income increases, the household would increase her time

to allocate for leisure, but how much she would increase time to spend on driving depends

on how congested roads are. She would drive more if roads are less congested. Furthermore,

the income elasticity is smaller for consumers living in high density areas. This makes sense

since recreational value of driving would be larger for consumers who have limited access to

in high public transit. Note that we can focus on leisure-related arguments as we already

control for distance to work.

The estimate of the mean price elasticity is negative and statistically significant across all

specifications. This is consistent with economy theory, but suggests the success of our control

strategy — in studies that use cross-sectional household-level data, this elasticity is often

estimated with bias toward zero or even positive [e.g., Goldberg (1998)]. The interaction

with public transit density is positive and marginally significant. This suggests that the

demand for driving is less price-elastic in high density areas. This may seem somewhat

counter-intuitive at first. When the price of gasoline increases, for example, consumers who

have access to public transit can use public transit instead of driving, and therefore, we

would expect the demand for driving to be more price elastic in areas with high public

transit density. This logic ignores the income effect. Consumers with access to public transit

use cars primarily for a recreational purpose, and the fuel cost accounts for a relatively small

portion of the recreational expenditures. On the other hand, consumers with limited access to

public transit use cars for daily use, and the fuel cost accounts for a larger share of consumer
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expenditures. Hence, this makes the demand for driving more price-elastic for consumers in

areas with low public transit density. The inclusion of the congestion interaction term makes

the interaction term with transit density become less statistically significant and smaller in

magnitude. Our reasoning is that congestion and transit density tend to co-move, and thus,

are picking up similar effects.

With all specifications, the selectivity correction terms are jointly highly significant. This

is despite the fact that we already control for a number of observables. Moreover, inclusion of

these correction terms generally improves the statistical significance of our key parameters.

This implies that there is selection on unobservables, and thus, omitting selection correc-

tion terms is likely to bias our estimates. When translating these parameter estimates into

elasticity estimates by public transit quintile, this gain in consistency does seem to matter.

Hence, we are in general in favor of models with selection correction. On one hand, the esti-

mate of the mean income elasticity parameter is positive and gets larger in magnitude after

selection correction. This means that unobservable demand factors for vehicle utilization,

which the selectivity terms are meant to control for, are negatively correlated with household

(net) incomes. On the other hand, the estimate of the mean price elasticity parameter does

not seem to change much, both in magnitude and in statistical significance.

6.3. Elasticity Estimates

Table 4 reports the estimates of various elasticities of car ownership and utilization by

transit density quintile. We estimate the price elasticity ϕdt of car ownership with respect

to rental price r for fuel type t (t = hybrid, diesel, keicar) for transit density quintile d as

follows:

ϕdt =
∂sdt
∂rdt

· rt
sdt

,

where sdt and
∂sdt
∂rt

are calculated as

sdt =
1

Nd

∑
i∈Id

P̂it and
∂sdt
∂rdt

= − 1

Nd

∑
i∈Id

ρ̂

yi − rit
P̂it[1− P̂it],

where P̂it denotes the estimate of household i’s probability of holding car models of fuel type

t, ρ̂ is the estimate of the parameter on net income, yi − ri is household i’s observed net

income, Nd is the number of sample households in d, and Id is the set of households in d.

For the price elasticity of VKT, we simply evaluate the parameter estimates α̂d and β̂d for

ln(y − r) and ln(Y PK) at the means of congestion and transit density measures for each

transit density quintile d, using the estimates from our preferred specification (8) in Table

3.

22



The price elasticities of car ownership range from −0.223 to −1.009. The numbers are

in line with, but slightly lower than, those reported in analogous studies (Bento et al.,

2009; Konishi and Zhao, 2017).13 As expected, the car ownership elasticities get smaller

(more inelastic) with transit density — consumers in low density areas are more price elastic

than those in high density areas. Moreover, hybrid cars face the most elastic demand. In

contrast, keicars face the most price inelastic demand. We believe this is the key to resolving

the opening puzzle. Consumers in low density areas have lower incomes, and hence, are more

price elastic. Yet, even these consumers have substantially more price elastic demand for

hybrid cars than keicars. Consequently, consumers in low density areas tend to buy keicars

for cheaper prices despite their high level of vehicle utilization. This also offers support for

the earlier findings of Konishi and Zhao (2017) who also find that keicars face more price

inelastic demand, despite that keicars typically serve low-income groups whose demand tend

to be more elastic ceteris paribus.

Vehicle utilization is not quite elastic with respect to (net) income. Interestingly, the

income elasticities decline with public transit density, and turn practically zero (i.e., sta-

tistically highly insignificant) in the forth to first transit density quintiles. We believe this

reflects the competing effects of income. As consumer’s income rises, the consumer increases

the time to spend on leisure, which tends to increase vehicle utilization, but at the same time,

it also increases the opportunity cost of time. With the high congestion level in urban areas

where public transit availability is also high, the consumer faced with the high opportunity

cost of time tends to opt for public transit rather than drive their cars. In Japan, roads in

even moderately populated areas are still congested, compared to the U.S. Hence, it is quite

reasonable to observe that the income elasticities in such areas tend toward zero (or even

negative).

The price elasticities of VKT are negative and statistically significant in all transit density

quintiles, but slightly lower in magnitude than those reported in Bento et al. (2009). Because

our car utilization regression focuses on a subsample of households who have bought cars

since 2012, much of the variation in YPK comes mainly from cross-sectional variation in

fuel economy ratings rather than that of gasoline price. Hence, our price elasticity estimate

is essentially capturing the rebound effect: i.e., buying a more fuel efficient car makes a

consumer drive more. Our results are consistent with the argument that the rebound effect

is often overstated (Gillingham et al., 2013). Our estimates suggest that the rebound effect

is even smaller in Japan than in the U.S. However, the use of cross-section data is known

13Note that we take the ‘holding’ approach as opposed to the ‘transactions’ approach in our demand
estimation [see Goldberg (1998) or Bento et al. (2009) on the difference between the two]. With this
approach, we implicitly get at the long-run demand elasticities, which tend to be smaller than the short-run
elasticities.
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to bias the price elasticity estimate toward zero due to the selection bias [for example,

Goldberg (1998) obtain a positive and statistically insignificant price elasticity estimate].

Hence, there is a possibility that our elasticity estimates may still be biased toward zero

even after controlling for the selectivity terms.

7. Counterfactual Analysis

7.1. Counterfactual Scenarios

We now use the estimated demand system to simulate the spatially-explicit distributional

impacts of counterfactual carbon-reduction policies over geographic space. There is already

a large literature that empirically investigates the distributional consequences of automobile-

related economic policies [e.g., West (2004), Bento et al. (2009)]. Their focus is, however, on

the variation of policy impacts by income. In contrast, what we wish to demonstrate here

is that public transit availability and innate preferences for vehicle portfolios may interact

with income distribution over geographic space in such a way that generates important

implications for efficiency and equity of alternative climate mitigation policies. To that end,

we consider three counterfactual policies: (a) carbon tax of $50 per ton, (b) feebates based

on fuel-economy ratings of cars, and (c) a public provision of an ecocar-sharing platform.

Our outcome variables of interest are vehicle ownership (number and types of cars owned),

vehicle utilization (monthly vehicle kilometers traveled), carbon emissions (monthly CO2

emissions from vehicle utilization), and consumer welfare (to be defined below). Our ability

to simulate economic outcomes is limited to those that make use of demand-side parameters

only. We have neither data nor policy relevant variations to estimate the supply-side parame-

ters with respect to the public transit or the car-sharing platform. Therefore, in the analysis

below, we assume perfectly elastic supply-side responses for all policy scenarios. Conse-

quently, we do not attempt to simulate car prices, gasoline prices, and any other economic

outcomes that would require supply-side parameters. These are simply treated as ‘fixed’

in our simulation analysis. We also assume no revenue recycling (or revenue accounting)

because it would only obscure the essence of the main analysis. Consequently, our simulated

outcomes should not be taken as realistic equilibrium responses to these counterfactuals.

Our goal here, instead, is to conduct a quantitative evaluation of how income, public tran-

sit density, and portfolio preferences may interact to generate heterogeneous demand-side

responses over geographic space, signifying the importance of accounting for such spatial

heterogeneity for designing efficient and equitable climate mitigation policies.
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Counterfactual 1. Carbon Tax

In this policy scenario, we assume that a carbon tax is implemented on top of the existing

tax on gasoline. This is indeed consistent with other countries’ experiences [see, for example,

Andersson (2019) for the case of Sweden]. We use $50 per ton of CO2 as a benchmark

estimate of social cost of carbon emissions (SCC) per Revesz et al. (2017).14 In theory, this

carbon tax on gasoline can fully restore economic efficiency by correcting for the negative

externality associated with carbon emissions from vehicle transportation. Hence, this policy

scenario serves as an important benchmark to contrast other policy counterfactuals. In our

empirical model, the carbon tax raises operating costs pj of all cars, yet it, in general, raises

the operating costs of fuel-inefficient cars (non-keicars) more than those of fuel-efficient cars

(keicars). Hence, this policy is expected to shift consumer demand from less fuel-efficient

cars to more fuel-efficient cars while decreasing overall vehicle ownership and utilization. Our

focus here is the distribution of such responses over geographic space and its implications

for consumer welfare vis-à-vis other policy scenarios. There is an important question as to

how the rental prices rj respond to the changes in pj. In our simulation, rental prices stay

unchanged since we assume perfectly elastic supply, which would absorb all the price impact

of the demand shocks.15

Counterfactual 2. Feebates (Eco-car Tax/Subsidy Incentives)

Next, we consider eco-car incentives on car holdings. Tax and subsidy incentives are a

common policy apparatus for inducing purchase of eco-friendly cars around the world. Such

incentive schemes are more generally termed as ‘feebates’ since they impose fees (or taxes)

on less fuel-efficient vehicles and rebates (or subsidies) on more fuel-efficient vehicles (See

Anderson et al., 2011). Institutional details on these incentive schemes vary by country. A

number of empirical studies have credibly quantified the economic impacts of such incentive

policies in a variety of contexts: the U.S. (Beresteanu and Li, 2011), France, Germany, and

Sweden (Klier and Linn, 2015), and Japan (Konishi and Zhao, 2017). Our purpose here

is not to repeat these studies; rather, to understand how consumer’s response may vary

over geographic space due to the intricate interaction of income, public transit access, and

portfolio considerations. Hence, we do not take any particular country’s incentive scheme,

14Recent advances in the SCC literature suggests a much higher estimate of SCC [see, for example, a report
by the Energy Policy Institute at the University of Chicago (EPIC, 2021)]. We experimented with various
SCC values and confirmed that much of our qualitative discussion stays the same, although the magnitudes
of policy impacts change.

15Alternatively, we may either assume that rental prices would fall exactly by the net present value of a
corresponding increase in annual fuel costs [per Busse et al. (2013) or Allcott and Wozny (2014)], or assume
the Bertrand-type price competition and solve for new equilibrium prices, in which case the changes in rental
prices depend on each automaker’s market power. In either case, the resulting automobile ownership would
be higher. Hence, our result may be taken as the upper bound estimate of the policy impact.
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and instead, consider a general feebates scheme: tax and subsidy in proportion to its carbon

footprint. Specifically, the tax tj (or the subsidy) is charged to the holding of car j according

to the formula:

tj = τ × E[v]× (EPKj − x) ,

where τ is the social cost of carbon emissions, E[v] is the expected annual VKT, EPKj is

the carbon emissions per kilometer of driving distance, which is estimated as the emissions

per liter of gasoline divided by the fuel economy (km/L), and x is the base emissions rate

beyond which consumers pay a tax and below which consumers receive a subsidy. As with

the carbon tax, we use the SCC value of $50 per ton. Note that the Japanese government

offered a variety of tax and subsidy incentives since 2009. Our demand estimation accounts

for these, and hence, this incentive scheme is implemented on top of these existing incentives.

Counterfactual 3. Eco-car Sharing

We implement this scenario as the introduction of a new ownership option by the govern-

ment. Specifically, the government supplies, perfectly elastically, a platform for n-household

sharing of ownership of an eco-friendly car. That is, the consumer pays for the rental price

on the shared vehicle itself, but the fixed cost of establishing and maintaining the car-sharing

platform is paid by the government. Hence, from the consumer’s eyes, the supply of this op-

tion is perfectly elastic. Then, the consumer faces the essential trade-off between the shared

cost of vehicle ownership/utilization versus the reduced rate of utilization. The question is,

who ‘buys’ this option, where and how much?

Our structural approach can get at this question. n-household sharing enables consumers

to co-own cars, reducing the rental cost of vehicle ownership by 1/n. However, n-household

sharing causes some inconvenience to the sharing users, reducing the rate of utilization as

much as 1/n.16 Given our empirical model in Section 3, we can simulate the consumer’s

indirect utility of an n-household car-sharing option as

uijs = ρ ln

(
yi −

1

n
rij

)
+

1

n
vijs(Xi,Zj, Sis) + ϵijs. (5)

In implementation, we simply add this new option to the set of alternatives while varying

16There is some uncertainty as to the utility loss from car sharing. On one hand, the utilization loss
may not be as much as 1/n. A majority of consumers use vehicles for limited times of a day and a week.
By scheduling the times of use, n users (households) may be able to satisfy all driving needs. This may
be particularly true if the information and autonomous vehicle technologies allow consumers to costlessly
schedule their use in the future. On the other hand, there may be some mental cost associate with scheduling
friction, which may be added to the loss of utility. This utility loss can be large when the size of platform
users is small, particularly in non-urban areas, but may become negligible if the size of users get large (the
economy of agglomeration). Hence, to be conservative, we assume the maximum utility loss of 1/n for this
simulation scenario.
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the size of n. From (5), it is clear that a consumer who has a low valuation for the benefit

of vehicle utilization relative to the value of income tends to buy this option. Hence, con-

sumer behavior under this counterfactual depends on the estimates of the marginal utility

parameters with respect to these two terms.

There is a remaining question as to what type of vehicles should be promoted as the

sharing platform. We focus on a hybrid vehicle. Hybrid cars offer substantially better mileage

per liter of gasoline than the keicars, holding car displacement, size, weight and other on-

vehicle amenities. Because consumers in low density areas rely on cars for daily commuting

and transportation, allowing those consumers to use hybrid cars instead of keicars is likely to

reduce pollution and increase welfare. Nonetheless, we have seen that the consumers tend to

own keicars instead of hybrid vehicles and that the estimated demand elasticities can explain

this puzzle. Then an interesting question is, Is the sharing of a hybrid vehicle effective in

reducing vehicle-related CO2 emissions?

7.2. Why Does Spatial Heterogeneity Matter?

Before turning to the results, we provide a brief overview of why and how our model with

the geographically-explicit portfolio effect may generate different economic impacts, both

qualitatively and quantitatively, from previous models.

First, the presence of preferences for a particular clean car can increase the valuation of

all ownership portfolios that come with that clean car, making the demand for clean cars

‘sticky’ and less elastic with respect to the price increase. Here, there are reasons why the

portfolio effect may pose some threat to a traditional price instrument through a ‘within-

portfolio’ substitution effect. That is, a consumer may absorb the (relative) price increase of

dirty cars by reallocating her spending between the cars in her preferred portfolio, instead

of either switching to clean cars or decreasing the number of her vehicle holdings. Second,

this portfolio effect may interact, in an important way, with public transit density and other

geographic attributes. For example, if households in low density areas value fuel economy

more and also value the clean-car portfolio more, then we may expect a larger ‘within’

substitution effect, but a smaller ‘between’ substitution effect (including the substitution to

the outside option) in low density areas than in high density areas. This implies a higher

economic incidence (or a larger welfare loss) in low density areas than in high density areas

and that the portfolio effect tends to amplify that effect. Lastly, the portfolio effect can

also interact with geographic distribution of income. Recall that we also take into account

demand heterogeneity due to differences in income as well as access to public transit, and

that consumers have more price-elastic demand for hybrid cars than keicars and in low

density areas than in high density areas. This is precisely the intricate consequence of
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spatial distribution of public transit and income. On one hand, average income is lower in

low density areas, which makes the demand more elastic ceteris paribus. On the other hand,

public transit density is lower in low density areas, which makes the demand less elastic

ceteris paribus. Given the presence of the portfolio effect, which makes the demand for a

certain type of cars less elastic, it becomes highly ambiguous as to how the demand response

varies over geographic space, for example, when the price of a hybrid car falls relative to the

price of a keicar or when the car-sharing option becomes available. This makes it a good

question to investigate empirically.

7.3. Results of Counterfactuals

Figure 4 presents our simulation results visually. In this figure, we display percentage

changes in (A) car ownership, (B) car utilization, and (C) vehicle CO2 emissions under

three counterfactual policy scenarios relative to the no-policy benchmark. For each of these

outcomes, the means and 95-percent confidence intervals are reported against population

density deciles instead of public transit density deciles. We do this because our interest lies

in understanding how incomes, public transit, and portfolio preferences interact to generate

intricate spatial heterogeneity over geographic space, a simple measure of which we use is

population density.

The figure signifies three primary findings. First, as expected, carbon tax is more effective

in reducing CO2 emissions than the other two policies, but its impact has a non-linear rela-

tionship to the population density. The CO2-reducing effect of carbon tax is generally larger

in urban areas than in non-urban areas, but eventually flattens out — i.e., the percentage

reduction (relative to no policy) becomes invariant with respect to the population density.

This occurs precisely due to the intricate interaction between income, public transit, and

portfolio preferences. In urban areas, car owners have higher incomes, own a small number

of relatively expensive cars, and hence, have inelastic demand for car ownership. The car-

bon tax, therefore, is not as effective in urban areas in spite of the abundant public transit

availability. In moderately dense areas (i.e., suburban areas), public transit is still relatively

abundant, yet consumers still use cars for daily errands. The carbon tax, which increases

the operating cost of car utilization, is quite effective in reducing both car ownership and

utilization in such areas. As the public transit becomes less available, however, consumers

have no other means but to use cars for daily commuting and errands, and hence, their

demand for car ownership is also inelastic, despite their lower incomes on average. Recall

our discussion that households in low density areas tend to own keicars (see Section 2),

which are less elastic than other car types (see Section 6). As a result, the effect of carbon

tax flattens out.
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Second, somewhat unexpectedly, the eco-car sharing policy has a sizable impact on CO2

emissions, roughly comparable to the carbon tax, but its impact has a U-shaped relationship

to the population density. Recall that we assume away supply side responses, and hence, we

can explain this result solely by demand side responses. In Panel A, we see that the policy

indeed has a larger effect on car ownership than the carbon tax, and has the largest impact in

moderately dense areas. This occurs mainly because the demand for eco-car sharing is higher

in urban areas where the car ownership demand is low (see Table 5). In urban areas, both

car owners and non-owners switch to the car-sharing option, and hence, the overall impact

on car ownership is small. In non-urban areas, car owners switch to the car-sharing option,

but the car-sharing demand is weak, and thus, the overall impact is small. In moderately

dense areas, the impact is large because the demand for car-sharing is relatively strong and

is able to induce car owners rather than non-owners into that option. Interestingly, from

Panel B, we see a sizable ‘rebound effect’ at play in urban areas. That is, the sharing of

hybrid vehicles lowers both the cost of car ownership and the cost of car utilization. The

former induces non-car owners into driving some non-zero distance while the latter induces

car-share users into driving more. Panel B suggests that the effects are strong in urban

areas. Panel C indicates, however, that the effect on car ownership is stronger than that

on car utilization, and thus, the combined impact translates into a sizable reduction in CO2

emissions.

Third, feebates are highly ineffective not only in reducing CO2 emissions, but also in

inducing a shift toward fuel efficient vehicles. This may come as a surprise, but is indeed

consistent with earlier empirical studies. In our stimulation, feebates are implemented in a

theoretically justifiable manner, with the SCC value of $50. As a result, the feebates in our

simulation range from −$35 to $76, which are added to an annualized rental price, at the

maximum. These monetary incentives are far smaller than those implemented in practice.

We now examine the effects of counterfactual policies on substitution patterns in Table

5. For ease of interpretation, we report the counterfactual outcomes in average per household

for each subsample sorted by population density quintile as of the 2015 level. Note that all

statistics reported in this table are unconditional averages; this is in contrast to Table 1

where the descriptive statistics are reported as conditional averages (i.e., of those who own

cars only). Furthermore, our demand estimation is restricted to the holding of at most two

cars. Hence, the counterfactual results are directly comparable to the top panel of Table 5,

but not to Table 1.

Recall our discussion in Subsection 7.2 that our model is expected to generate geography-

dependent substitution patterns within as well as between portfolios, and hence, we also

expect policy impacts to exhibit such differential substitution patterns. Table 5 indeed con-
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firms such expectation. First, carbon tax induces a larger decrease in the ownership share

of keicars and a larger increase in the share of hybrid cars in non-urban areas than feebates,

despite the fact that both policies tend to increase relative utility of fuel efficient cars. This

occurs because the two policies affect two different price margins. Carbon tax changes the

relative operating costs of cars while feebates change the relative ownership costs of cars

directly. Given our parameter estimates, the latter induces consumers to substitute away

from keicars to hybrid cars in non-urban areas (where demand for car utilization is high)

whereas the former causes consumers to shift uniformly toward fuel efficient cars. Second,

the share of those who opt for shared eco-cars is monotonically increasing with population

density. This is consistent with our discussion in Subsection 7.1. From eq. (5), a consumer

who has a low valuation for the benefit of vehicle utilization relative to the value of income

tends to buy this option. The share of such consumers tend to monotonically increase with

the population density, and hence, the result. Third, feebates are not effective in reducing

car ownership or utilization, but are effective in inducing a shift toward fuel efficient vehicles.

Both are expected in theory and echo previous empirical findings.

Lastly, we touch on consumer welfare. Economic theory predicts that consumers with

inelastic demand would have higher tax incidence, and thus, lose more from a given level of

tax while consumers would gain more from a new product when their demand for the product

is high. Thus, given our results above, we expect the consumers in low-density areas would

lose more from the carbon tax than in high-density areas while the consumers in high-density

areas would gain more from the eco-car sharing policy. For feebates, the effect of spatial

heterogeneity is, a priori, unclear. Consumers, either with or without inelastic demand,

would be able to switch from less fuel efficient cars, which are taxed more under feebates, to

more fuel efficient cars, which are subsidized. Hence, those who have inelastic demand for

gas-guzzlers would lose more from the policy. We confirm these points in Figure 5, where

we plot changes in compensating variation by population density. To estimate compensating

variation, we use the standard formula à la Small and Rosen (1981). A challenge, however, is

that our specification involves a non-linear income term, and thus, we do not have a closed-

form analytical expression for the compensating variation term. We thus follow Herriges and

Kling (1999), and solve for it numerically.

As shown in Figure 5, the welfare loss from the carbon tax policy varies substantially

over geographic space, ranging 100,000 yen per year per household in lowest-density areas

to less than 10,000 yen in highest-density areas. The overall welfare loss averages at roughly

59,7000 yen per year per household. This estimate is roughly comparable to those in Bento

et al. (2009), who estimate that the average welfare loss is around 22,000 yen for a 6.6

yen gasoline tax increase when there is no revenue recycling. In contrast, the welfare gain
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from the eco-car sharing policy range from 100,000 yen in highest-density areas to 25,000

yen in lowest-density areas, with the average welfare gain of roughly 58,600 yen per year per

household. For feebates, the welfare effect is indistinguishably zero, and does not vary much

over space. Some consumers continue to own the same portfolio of vehicles while others

switch to a new portfolio. Some of the switchers gain while others lose; some of the stayers

gain while others lose. The losers and gainers are roughly balanced because we simulate the

feebates in a theoretically consistent manner — fees and rebates are distributed equally over

car models.

We emphasize again, however, that these welfare responses only account for demand

side only, and thus, neither supply side responses (i.e., price/quality change) nor changes

in producer surplus are taken into account. Nonetheless, this contrast between the three

policies (in terms of welfare) suggest a potential for a policy mix, a carbon tax combined

with incentives for eco-car sharing, which in our view, has not been fully explored to date.

8. Conclusion

How does demand for vehicle transport vary over geographic space? How does the eco-

nomic impact of a policy to control vehicle emissions depend on such spatial heterogeneity?

With these questions in mind, we estimate a model of vehicle ownership and utilization,

explicitly accounting for the role of incomes, public transit networks, and portfolio consid-

erations, on a large cross-sectional sample of households in Japan.

Our model provides evidence that consumers in low density areas inelastically demand

keicars (i.e., extremely small vehicles) for its cost performance and that all three factors

— incomes, public transit, and portfolio considerations — are important in generating this

inelastic demand. Low-income households in low density areas tend to have more elastic

demand than high-income households in high density areas, yet their demand for keicars is

more inelastic than for hybrid cars because they need low-cost fuel-efficient vehicles for daily

use and because they opt for a combination of keicars with others. Hence, the estimated

model can resolve two empirical puzzles we observe in Japan: Overall price elasticity of

demand for vehicle ownership increases with vehicle size; invariance of demand for hybrid

vehicles with respect to public transit density.

To demonstrate the economic significance of these findings, we use the estimated de-

mand to simulate the effects of three counterfactual climate mitigation policies: carbon

tax, feebates, and eco-car sharing. Our simulation results indeed confirm highly geography-

dependent substitution patterns within as well as between portfolios, and hence, policy im-

pacts exhibit a highly non-linear relationship to population density. Car owners in urban
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areas are generally richer, prefer having a smaller number of cars, and thus, have relatively

inelastic demand for car ownership than those in non-urban areas. Car owners in non-urban

settings, on the other hand, have inelastic demand for car utilization and have preferences for

a mix of keicars with other cars, whose demand is estimated to be highly inelastic, precisely

due to low public transit availability. We obtain three important findings as a results of the

mixed effects of these. First, carbon tax has a larger CO2-reducing impact in non-urban set-

tings, yet the effect flattens out as the transit density further declines as the vehicle demand

becomes increasingly sticky. Consequently, the welfare loss from carbon tax is greatest in

the lowest density areas. Second, eco-car sharing can mitigate this welfare penalty while

remaining equally effective. Third, feebates perform poorly relative to either policy. Taken

all together, our results suggest the potential for a welfare-improving policy mix: a carbon

tax in combination with a car-sharing platform, particularly in non-urban settings.

There are several important limitations to our study. First, we simulate the eco-car

sharing policy as an introduction of a purely hypothetical new ownership option. Hence,

the counterfactual policy effect depends heavily on the way the new option is modeled (as

well as estimated parameters, of course). Second, our analysis is limited to the demand side

only. Hence, neither supply-side responses (e.g., price/quality changes) nor producer surplus

is accounted for in our simulation. These issues can be addressed only with availability of

suitable data, and thus, are left for future research. Nonetheless, our work has important

implications for climate mitigation policies and for a new direction of research. In the era of

the rising gig economy and autonomous vehicle technology, sharing of vehicles may become

increasingly costless and seamless, both at the ownership level or at the utilization level. On

one hand, the supply of car-sharing service is likely to enjoy the economy of density. Hence,

the economic cost of such service is likely to low in high density areas. On the other hand,

the social demand for such service (i.e., the sum of private and external benefits) may be

high in low density areas. If so, such a mismatch between demand and supply would suggest

the need for the government intervention. Our results shed some lights on this conjecture

— unexploited demand for sharing of a eco-friendly vehicle is large, it has the potential

for reducing carbon emissions on a scale comparable to the carbon tax, and it may work

as the means to counteract the welfare-decreasing effect of the carbon tax, particularly in

non-urban settings.
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Figure 1. Measures of Access to Public Transit 

 

Note: All observations are at the municipality level. For reference only, we use county- or city-level 
population density data for U.S. cities. 

  



Figure 2. Vehicle/Household Characteristics by Public Transit Density 

 
Note: For the number of cars owned, the mean and the 80th percentile are reported; Vehicle kilometer 
traveled (VKT) is the sum over two most frequently used cars owned by each household; Fuel economy 
ratings and the share of hybrid cars/keicars are the (unweighted) averages over the two cars; Household 
income is in millions of Japanese yen; For vehicle portfolios, we report (i) the share of complementary 
portfolios, i.e., the share of households who own any combination of different vehicle types (keicar, regular, 
and minivan), and (ii) the share of households who own a keicar with other vehicle type, only among 
those who own two cars. All figures, with the exception of panel A, report the averages of these indicators 
over households in each public transit density bin.  



 
 
 

Figure 3. Prediction Performance: 
Full Model versus Naï ve Random Coefficient (RC) Logit 

 

Note: Predicted shares in this figure are calculated as unconditional shares: i.e., not conditional on car 
holding unlike in Figure 2. 

  



 

 

 

Figure 4. Heterogeneous Impacts of Counterfactual Policies over Geographic Space 

 

Note: The vertical axis is the percentage change under each counterfactual relative to the no-policy 
benchmark. For carbon tax and feebates, we use the SCC value of $50/ton-CO2. For eco-car sharing, we 
set the number of households sharing a hybrid vehicle at 3. The whisker indicates the 95% confidence 
interval for bootstrap iterations. 

 

  



 

 

 

Figure 5. Welfare Impacts of Counterfactual Policies over Geographic Space 

 
Note: The vertical axis denotes changes in compensating variation in 10,000 yen (at $1 = 100 yen) per 
year per household relative to the no-policy benchmark. For carbon tax and feebates, we use the SCC 
value of $50/ton-CO2. For eco-car sharing, we set the number of households sharing a hybrid vehicle at 3. 
The whisker indicates the 95% confidence interval for bootstrap iterations. 

 

  



Table 1. Descriptive Statistics by Population Density Quintiles 

 

  

Population Density Quintiles

Lowest 4th 3rd 2nd Highest

Number of obs. (households) 20,963 20,851 21,041 21,078 21,033

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Public transit density 0.112 0.064 0.178 0.080 0.277 0.125 0.392 0.110 0.559 0.119

Congestion measure 0.595 0.108 0.689 0.105 0.753 0.136 0.813 0.103 0.899 0.062

Household income (10,000 yen) 601.6 410.1 634.6 427.1 656.1 442.5 684.1 460.7 746.1 530.1

Household size 2.94 1.39 2.88 1.32 2.81 1.27 2.70 1.24 2.52 1.25

[Num. of people in household]

Own car? [1 = yes] 0.938 0.241 0.908 0.289 0.829 0.376 0.730 0.444 0.497 0.500

Drive to work? [1 = yes] 0.548 0.498 0.434 0.496 0.266 0.442 0.154 0.361 0.070 0.256

Num. of cars owned 1.73 0.90 1.56 0.78 1.32 0.61 1.17 0.44 1.09 0.36

[of those who own car]

Most frequently used car

Monthly VKT 1,162.7 2,378.0 1,000.6 1,916.8 892.3 1,884.1 785.6 1,837.6 730.3 1,785.4

Price (10,000 yen) 199.6 129.3 206.5 135.4 218.9 140.0 229.7 150.7 261.7 182.1

Fuel economy (km/L) 20.4 7.6 20.5 7.7 19.8 7.6 19.3 7.7 18.5 7.7

Vehicle size (mm) 7,276.2 819.0 7,297.1 801.1 7,394.9 783.4 7,457.4 793.8 7,537.6 844.1

[length + width + height] 

Hybrid [1 = yes] 0.135 0.342 0.146 0.353 0.146 0.353 0.150 0.357 0.150 0.357

Keicar [1 = yes] 0.349 0.477 0.327 0.469 0.289 0.454 0.254 0.436 0.221 0.415

Second most used car

Monthly VKT 964.4 1,920.3 940.7 2,231.6 937.0 2,318.8 941.9 2,856.1 1,065.5 3,399.3

Price (10,000 yen) 170.8 116.4 180.8 128.6 194.7 151.9 215.9 184.1 283.5 268.5

Fuel economy (km/L) 21.1 7.0 21.0 7.1 21.0 7.3 20.2 7.6 19.0 7.3

Vehicle size (mm) 7,037.7 760.9 7,058.4 777.2 7,068.4 838.0 7,192.5 843.2 7,234.9 1,050.5

[length + width + height] 

Hybrid [1 = yes] 0.039 0.195 0.035 0.183 0.023 0.150 0.015 0.122 0.009 0.096

Keicar [1 = yes] 0.531 0.499 0.501 0.500 0.480 0.500 0.420 0.494 0.329 0.470

Keicar-Keicar 12.4% 10.8% 11.5% 10.5% 7.2%

Keicar-Regular 26.9% 25.9% 25.4% 25.4% 21.4%

Keicar-Minivan 32.4% 31.8% 31.7% 31.2% 29.5%

Regular-Regular 6.8% 8.7% 9.0% 9.4% 11.9%

Regular-Minivan 12.6% 12.9% 14.0% 13.4% 16.3%

Minivan-Minivan 8.9% 9.9% 8.4% 10.2% 13.7%

Total share 100.0% 100.0% 100.0% 100.0% 100.0%

     Portfolio shares

     [of those who own two (or more) cars]
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Table 4. Elasticity Estimates 

 

 

Note: Bootstrapped standard errors in parenthesis. We use 50 replications for car ownership elasticity 
and 500 replications for VKT elasticity. 
 

  

5th 4th 3rd 2nd 1st

(Lowest) (Highest)

Car ownership elasticity

Hybrid cars -1.009 *** -0.892 *** -0.706 *** -0.483 *** -0.296 ***

(0.022) (0.018) (0.011) (0.008) (0.006)

Diesel cars -0.867 *** -0.825 *** -0.704 *** -0.546 *** -0.365 ***

(0.027) (0.020) (0.015) (0.017) (0.013)

Kei-cars -0.749 *** -0.643 *** -0.488 *** -0.329 *** -0.223 ***

(0.016) (0.014) (0.010) (0.007) (0.005)

VKT elasticity

w.r.t. Net income 0.044 ** 0.030 0.010 -0.007 -0.033

(0.021) (0.020) (0.018) (0.017) (0.019)

w.r.t. YPK -0.338 *** -0.306 *** -0.267 *** -0.224 *** -0.167 **

(0.073) (0.072) (0.070) (0.069) (0.078)

Public transit quintiles



Table 5. Impacts of Counterfactual Policies 

 

Note: We assume the share of those who use car-sharing as a substitute for holding a car is zero in the 
benchmark. CV stands for the compensating variation. 

 

5th 4th 3rd 2nd 1st All

(Lowest) (Highest)

No Policy Counterfactual

Pop. density (1000/km2) 0.273 1.082 3.409 7.414 14.412 5.318

Pub. transit density 0.112 0.178 0.277 0.392 0.559 0.303

Num. of cars owned 1.130 0.995 0.799 0.620 0.426 0.794

Car/ownership type (%)

Hybrid 7.10 6.97 5.50 4.15 2.56 5.26

Diesel 0.92 0.95 0.87 0.72 0.50 0.79

Keicar 39.52 28.83 20.00 12.70 7.88 21.79

Car-sharing - - - - - -

Monthly VKT (km) 939.16 713.75 447.51 273.83 112.33 497.32

CO2 from driving (kg/mo.) 116.94 90.92 58.34 36.79 15.47 63.69

Counterfactual I: Carbon tax ($50/ton-CO2)

Num. of cars owned 1.105 0.972 0.781 0.607 0.420 0.777

Car/ownership type (%)

Hybrid 7.24 7.08 5.55 4.16 2.55 5.32

Diesel 0.94 0.96 0.87 0.71 0.50 0.80

Keicar 38.75 28.25 19.64 12.51 7.80 21.39

Car-sharing - - - - - -

Monthly VKT (km) 895.80 681.23 427.38 262.02 108.47 474.98

CO2 from driving (kg/month) 110.65 86.07 55.32 35.00 14.89 60.39

CV (10,000 yen/year) -9.41 -8.81 -6.13 -3.84 -1.64 -5.97

Counterfactual II: Feebates (median as a tax-subsidy cutoff)

Num. of cars owned 1.130 0.995 0.799 0.620 0.426 0.794

Car/ownership type (%)

Hybrid 7.13 6.99 5.52 4.17 2.57 5.28

Diesel 0.93 0.95 0.87 0.72 0.50 0.79

Keicar 39.57 28.87 20.04 12.72 7.89 21.82

Car-sharing - - - - - -

Monthly VKT (km) 938.96 713.54 447.32 273.67 112.25 497.15

CO2 from driving (kg/month) 116.80 90.81 58.27 36.74 15.45 63.61

CV (10,000 yen/year) -0.01 -0.03 -0.03 -0.04 -0.03 -0.03

Counterfactual III: Car-sharing of hybrid cars (3-household sharing)

Num. of cars owned 1.099 0.962 0.770 0.599 0.419 0.770

Car/ownership type (%)

Hybrid 6.82 6.62 5.15 3.84 2.35 4.95

Diesel 0.89 0.90 0.81 0.66 0.46 0.74

Keicar 37.98 27.40 18.74 11.73 6.22 20.41

Car-sharing 4.09 5.20 6.66 7.82 8.31 6.41

Monthly VKT (km) 926.25 702.56 441.42 272.10 113.85 491.24

CO2 from driving (kg/month) 114.31 88.36 56.44 35.53 15.06 61.94

CV (10,000 yen/year) 2.91 4.10 5.83 7.52 8.93 5.86

Population density quintiles (as of 2015)



Appendix	A.	Sample	versus	Population	Distribution	by	Prefecture	
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Appendix B. Choice Set and Key Variables

This appendix explains how we define the choice set for the vehicle ownership estimation and
key variables used in estimation. We classify each respondent’s observed vehicle choice according to
its curb weight, car type, fuel type, sales type, and make as in Table B1. We do essentially the same
for the first and the second most frequently used cars. This yields a choice set of 168 alternatives
(incl. the option of holding no car). Vehicle attributes such as displacement, horsepower, size,
and weight are averaged over observations for each choice alternative. Price variables (i.e., rental
price and YPK) are similarly averaged over observations for each choice alternatives and then
adjusted to contemporaneous values using information on purchase year/month (see below). This
type of aggregation is common in studies that use household-level data [see, for example, Bento
et al. (2009)]. Even with this level of aggregation, Stata’s maximum likelihood estimation of the
conditional logit model takes roughly 1 hour for each run on a modern computer (10 cores/20
threads, Core i9 CPU, 64GB memory), due partly to our large sample size. Intuitively speaking,
this aggregation implies that the consumer in the model makes her choice comparing the choice of
her own against ‘average’ economic values of alternatives.

Table B1. Vehicle Classification

U.S. NHTSA Classification Car Type Fuel Type Sales Type Make

Mini: Weight ≤ 900 (kg) Keicar Diesel New Toyota
Light: 900 < Weight ≤ 1,150 Regular Hybrid Used Honda
Compact: 1,150 < Weight ≤ 1,350 Minivan Gasoline Other
Medium: 1,350 < Weight ≤ 1,600
Heavy: Weight > 1,600

Our key variables used in estimation (both the ownership and the utilization equation):

Household income: Annual before-tax incomes are reported with an interval of 1 million yen
from 2 million yen up to 10 million yen, and then 10 to 15 million yen, 15 to 20 million yen,
and 20 to 30 million yen. We use the mid-point of income interval as a measure of annual
income.

Rental price: The survey records the purchase price of each of the two frequently used cars. We
convert the purchase price into a rental price using an annual depreciation rate of 10% and
annual interest rates, which is allowed to vary by year/month of purchase. We add annualized
automobile taxes and tax incentives to this rental price, which are also allowed to vary by
year/month of purchase. The rental price is further adjusted for regional inflation rates.

Household size: We use the raw number of individuals in the household.

Yen per kilometer (YPK): YPK is the gasoline price divided by the catalog-based fuel economy
ratings. We use the gasoline price for the year/month of purchase.

Horsepower/weight (HP/W): HP/W is the horsepower divided by curb weight.

Size: Vehicle size measured as the sum of length, height, and width.



Garage certificate dummy: In Japan, basically all vehicles must obtain a garage certificate,
but in some areas, only keicar do not require a garage certificate. Since a garage certificate is
required to prevent on-street parking, areas where it is not required are generally considered
to have sufficient parking space, and such areas may have high demand for vehicles in terms
of ownership costs and ease of driving.

Metropolitan dummies: Four dummy variables indicating whether the respondent resides in
major metropolitan areas: Kanto, Chukyo, Kinki, or Kitakyushu.

In the vehicle utilization equation, we also use (1) the respondent’s age, years of education,
work status, marital status as demographic controls and (2) population density and availability of
hospitals and public parks at the district level as geographic controls.



Appendix C. Two-stage Residual Inclusion (2SRI) Method

The full specification of our conditional logit model is given by:

ui(j,k)s = ρ ln(yi − rij − rik) + Z′
j(λ0 + xiλ1 + trsλ2)

+Z′
k(λ0 + xiλ1 + trsλ2) + (κ0 + κ1xi + κ2trs)I(j, k) + ϵi(j,k)s

where xi is the household size and trs is the rail transit density.
Our concern is the endogeneity of trs that arises through consumer’s endogenous residential

decision. Consumers who reside in low transit areas may have innate preferences for driving; those
who reside in high transit areas may have innate distastes for driving. Such innate preferences
may correlate with preferences for certain types of cars, and hence, enter the indirect utility as a
choice-specific unobserved error ϵi(j,k)s. The 2SRI method we describe below can parsimoniously
address all endogeneity concerns that arise through consumer’s endogenous residential decision.

Let w be a vector of valid instruments for trs such that:

trs = g(w) + νs and E[ϵi(j,k)s|w] = 0.

Let us further assume that we can write

E[ϵi(j,k)s|νs] = Λi(j,k)νs.

Note that we are exploiting the fact that the pure source of endogeneity lies at the district level
(i.e., innate preferences for choosing district s), yet is correlated with choice-specific unobservables.
Wooldridge (2015) shows that in nonlinear models, we can flexibly apply the control function
approach and rewrite the indirect utility as:

ui(j,k)s = ρ ln(yi − rij − rik) + Z′
j(λ0 + xiλ1 + trsλ2) + Z′

k(λ0 + xiλ1 + trsλ2)

+(κ0 + κ1xi + κ2trs)I(j, k) + νs + ν2s + Λi(j,k)νs + Λi(j,k)ν
2
s .

Given this, we implement this 2SRI method as follows. In the first step, we fit the fractional
polynomial regression using the current population density and the past rail transit density as of
1980 as instruments.1 Stata’s fractional polynomial routine has chosen the following as the best
linear fit:

trs,2015 = θ0 + θ1trs,1980 + θ2pop
(0.7)
s,2015 + θ3pop

(2.0)
s,2015 + νs.

We then obtain the estimates of the residual ν̂s. Note here that we do not include choice-specific or
household-specific covariates in this first-stage regression because the residual of interest varies only
at the district level s. In the second step, we estimate the conditional logit using ν̂s, ν̂

2
s , Λi(j,k)ν̂s

and Λi(j,k)ν̂
2
s along with other covariates in the original utility. Note, however, that the first two

terms ν̂s and ν̂2s are canceled out since they are constant across choice alternatives. There is one
remaining issue. We have no a priori knowledge on Λi(j,k), and without it, we need to estimate
them as choice-specific parameters. This results in estimating 168 additional parameters. Our
earlier attempt has resulted in non-convergence. Hence, we have chosen an alternative route. By
assumption, choice-specific attributes such as Zj , Zk, and I(j, k) are pre-determined, and thus,
their interactions with ν̂s should be able to parsimoniously handle this term. Hence, we estimate
the second-stage model, interacting ν̂s and ν̂2s with these observed choice-specific attributes.

1We make sure that all of the households included in the estimation do not own cars sold prior to 1980.


