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Abstract Water-quality trading requires inducing permit prices that account properly for spatially explicit
damage relationships. We compare recent work by Hung and Shaw (2005) and Farrow et al. (2005) for river
systems exhibiting branching and nonlinear damages. The Hung-Shaw scheme is robust to nonlinear dam-
ages, but not to hot spots occurring at the confluence of two branches. The Farrow et al. (2005) scheme is
robust to branching, but not to nonlinear damages. We also compare the two schemes to each other. Neither
dominates from a welfare perspective, but the comparison appears to tilt in favor of the Farrow et al. scheme.

1. Introduction

Enthusiasm for water-quality trading (WQT) is high in the U.S,, at least in certain quarters [U.S. Environmental
Protection Agency, 2003, 2004]. The experience with sulfur dioxide allowances proved that markets can work
for air pollution. Should they not work for water pollution too? So far, where trade in water quality has been
attempted the results have not been encouraging, at least according to one important metric: the number
of trades has typically been lower than hoped [Morgan and Wolverton, 2005; King and Kuch, 2003; Fisher-
Vanden and Olmstead, 2013]. Is this because trading is simply not a viable policy approach for water, or
because the existing schemes are not well designed?

Hoping that the problem is with design, not with concept, economists continue to seek new and improved
ways of building WQT systems. The aim is to improve their performance and so, perhaps, to achieve the
kind of cost savings that accompanied trading for SO, under Title IV of the 1990 Clean Air Act Amendments
[Carlson et al., 2000]. Two recent contributions, by Farrow et al. [2005] and by Hung and Shaw [2005], follow
this strategy. Though quite different in specifics, both offer innovative schemes for trading between point
sources on a river system.

The present paper grew out of our efforts to employ these two approaches in a study of trading for temper-
ature in the Vermillion River, a popular trout stream in suburban Minnesota [Vermillion River Watershed Joint
Powers Board, 2008]. In each case, we encountered difficulties that could be traced to particular features of
the respective schemes. The Vermillion trout fishery extends into tributaries, and so the trading system we
sought would need to accommodate branching. The biology of trout indicates the existence of threshold
temperatures above which the fish are dramatically more susceptible to mortality [Elliott, 2000]. The trading
system we sought would need to accommodate nonlinear damages.

Our attempt to apply Hung and Shaw revealed a problem in their model that arises when a “hot spot” is
located at a confluence of streams. There, the Hung-Shaw method of allocating permits is ill defined. Our
attempt to apply Farrow et al. revealed a problem in their model that arises when the damages associated
with emissions are nonlinear. There, the Farrow et al. damage coefficients cannot be computed independ-
ently. Discovery of these problems led us to investigate the welfare properties of the two systems by incor-
porating into a single theoretical model the two important features noted above: branching rivers and
nonlinear damages. Our purpose is to describe the difficulties we encountered, to explain their source in
each case, and to gauge the degree to which they detract from the obvious appeal of the two schemes. Our
ultimate finding is that both are likely to serve reasonably well in practice. Attempts to apply them, though,
should be carried out with an awareness of the possible pitfalls.

After describing our model, we turn first to an analysis of Hung and Shaw’s trading-ratio system (TRS). The
TRS is designed to guarantee that ambient water-quality standards are satisfied at each “zone” of the river
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system. The regulator first calculates a matrix of physical transfer coefficients, a la Montgomery [1972],
describing the portion of pollutant emitted at each zone that remains in the river at any downstream zone.
Permits are allocated so as to meet the zonal standards without trade, and then trade between sources is
executed at the ratio of coefficients. By design, the transfer coefficient from a downstream to an upstream
source, or across branches above a point of confluence, is always zero. Thus, upstream sources cannot buy
from downstream sources and trade across branches above a point of confluence is prohibited. These
restrictions mean that under the TRS some trades that increase social welfare are prohibited. What is more,
we find that when a “hot spot” is located at a confluence of streams, the Hung-Shaw method of allocating
permits is ill defined. Where this is true, a cost-effective outcome can be guaranteed only if the regulator
knows firms’ abatement cost functions.

In Farrow et al., whose methodology plays an important role in Muller and Mendelsohn [2009], the main con-
straint is that total monetary damages in the river system cannot exceed a maximum determined by the
regulator. (We call this the damage-denominated trading-ratio system, or DTRS.) Each source is assigned a
damage coefficient that reflects the integral over its downstream “zone of influence” of marginal damage
caused by that source’s emissions. Permits are then allocated so that aggregate damages satisfy the overall
monetary constraint, and trade can occur between any two sources at the ratio of their damage coefficients.
Unlike the TRS, the DTRS is not concerned with water quality at specific points along the river. Also unlike
the TRS, trade can occur across branches above a confluence and upstream sources can buy from down-
stream. When the model is extended to nonlinear damages, though, we find that the Farrow et al. allocation
scheme too can be ill defined. This possibility arises because emissions from each source affect the marginal
damages of all others. What is more, even if the damage coefficients are computed at the cost-effective
optimum, the trading outcome can still fail to achieve that optimum, because here the initial supply of per-
mits goes astray.

These findings suggest that we need to evaluate the welfare properties of the two systems against the
same benchmark. To this end, in section 5 we consider the efficient, fully socially optimal, program for a
social planner who selects a vector of emissions to minimize the sum of abatement costs and pollution
damages. We compare the welfare losses of the two systems, if any, against this efficient benchmark.
We find that, when the regulator is able to allocate permits in the first-best manner, the TRS struggles
precisely where the DTRS succeeds (in the face of branching), and vice versa (in the face of
nonlinearities).

In particular, we find that the TRS outperforms the DTRS if there is no branching but damages are nonlinear.
Because the TRS sometimes disallows efficient trades, improvement over a no-trade baseline can be inhib-
ited. For certain configurations of sources above and below a confluence, in particular if the disallowed
trades would have been inefficient, this can turn out to be an advantage relative to the DTRS. In contrast,
however, when the regulator is unable to allocate permits in the first-best manner, we find that the TRS is
generally dominated by the DTRS. In such a case, the regulator can make use of the damage coefficients to
encourage efficient trades that increase welfare relative to the second-best initial allocation of permits. The
exception occurs when inefficient trades between branches, prohibited by the TRS, are instead allowed by
the DTRS. When this occurs, the DTRS is too permissive in that some trades that reduce social welfare are
permitted.

These findings suggest that the relative performance of the two systems depends on the distribution of
sources in a watershed featuring both branching rivers and nonlinear damages. We investigate this ques-
tion by constructing a small numerical model and perturbing the geographic distribution of pollution sour-
ces. Here again, our results suggest that neither system dominates from a welfare perspective. As expected,
the TRS precludes some efficient trades across branches and the DTRS allows some inefficient trades. How-
ever, our comparative work tilts in favor of the DTRS: for most of our limited set of configurations of the
numerical model, welfare improvement over the second-best allocation is larger for the DTRS than for the
TRS. The question of how the two compare in an empirical setting is deferred to future work. We find it
encouraging that the efficiency loss from failing to issue the correct number of permits is much greater
than the efficiency loss from failing to set the correct trading ratios. This last is what is meant by getting pri-
ces right, and it leads us to believe the two systems do indeed represent significant innovations in the
water-quality trading literature.
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The reader might reasonably ask whether hot spots at confluences, or nonlinear damages, are important con-
cerns in water policy. We believe that they are. Cities tend to rise up in those places where rivers meet. This
means that water quality is likely to be compromised by industrial activity, and so a hot spot is more likely, at
a confluence. Linear damages, on the other hand, certainly confer a computational advantage upon a model
of water-quality trading. But the chemistry and the biology of aquatic systems are sometimes characterized
by thresholds or tipping points or other nonlinear relationships between nutrient concentration and out-
comes of interest. What is more, the constant marginal abatement benefits that attend linear damages are
hardly standard in environmental economics. In textbook treatments [Baumol and Oates, 1988, for example]
and a host of scholarly articles, the assumption of declining marginal benefits is very much the norm.

2. A Model of Water-Quality Management

Consider the problem of regulating a single pollutant that is emitted by N point sources, indexed by

i=1,...,N, located along a river system. Let e; represents emissions from source i, with
e=(eq,...,e,...,ey), and let e be a vector of baseline or uncontrolled emissions, with e; < e;. Let x=(x,
-+ yXm,--.,Xn) be a vector of ambient concentration levels, where x,,, denotes concentration at receptor m.

Assume, as in Montgomery [1972], that there exists a linear mapping 7 : R — R describing the scientific
relationship between e and x, so that x=Te', with T an M X N matrix of nonnegative transfer coefficients.
The assumption of a linear mapping from emissions to concentration is not innocuous [Todd and Mays,
2005]; we make it in order to place our focus firmly on nonlinear damages. Our framework would be useful
also in understanding the implications of a nonlinear T mapping.

Let S: RM — R, given by S(x), be a differentiable and possibly nonlinear function that describes total eco-
nomic damages as a function of the vector of concentration levels and assume that 9S/9x,, > 0 for all m. It
follows that total economic damage as a function of emissions is differentiable and given by D(e)=5(Te).
Define a vector of abatement levels a=e—e, where by definition g; € [0, e;]. Each source i is assumed, here
and throughout the paper, to have a twice-differentiable abatement cost function Ci(a;), with
Ci>0,C;>0,and C(0)=0.

The usual approach to modeling an emissions-trading scheme is to specify one variant or another of a cost-
effectiveness program. In Montgomery [1972], Krupnick et al. [1983], and McGartland and Oates [1985], for
example, the constraint placed on the problem is a vector of environmental standards, one for each recep-
tor. This approach is followed in Hung and Shaw [2005]. For a given vector of exogenously determined zonal
environmental standards X, they specify the following cost-effectiveness program:

a">=argmin {Z:\Iﬂ Gi(a)|xm < Xm, x=Te', and a; € [O,e,-}}. 1
| .

The TRS is designed to solve program (1). We note that the TRS trading scheme is not designed to achieve a
socially optimal outcome, a property it shares with earlier work.

An interesting alternative, the innovation of Farrow et al. [2005], is to specify a different cost-effectiveness
program. Farrow et al. impose a constraint on total monetary damages caused by the vector of emissions.
They assume that D(e) is additively separable and linear in emissions: D(e)=zid,e;, where d; is a damage
coefficient describing the aggregate damages caused by a unit of emissions from source i. For an exoge-
nously given limit on total monetary damages TD, Farrow et al. specify the following cost-effectiveness
program:

a™M=arg min {Z,AI:] Ci(a;)|D(@—a) <TD and g; € [O,e,-]}. )

The DTRS is designed to solve program (2). Like the TRS, it is not designed to achieve a socially optimal out-
come. As Muller and Mendelsohn [2009] observe, a™" will be socially optimal only if the constraint on total
damages, TD, is set at the efficient level.

Finally, we define a criterion that can be used to compare the two systems. Following Muller and Mendel-
sohn, a natural choice is to define the efficient program. A social planner who knows the cost and damage
functions and who wishes to maximize social welfare will select an efficient vector of abatement that mini-
mizes the sum of damages and abatement costs:
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a*f=arg main {ZL Ci(aj)+D(e—a)|a; € [O,e;}}. 3)

Given that the C/'s and D are continuous and that the constraint set is compact, the Weierstrass theorem
ensures that a solution to (3) exists. Let x* denote the associated vector of efficient concentrations and D
=D(e—af) the associated level of damages. In order to guarantee uniqueness of the solution to (3), one
would need also to impose curvature restrictions on D(+). In the numerical simulation below, local curvature
of a sigmoidal damage function yields optima that appear to be unique.

In the next two sections, we show that in the presence of branching (manifest in the T matrix) the TRS equi-
librium may not achieve the solution to (1). If damages are nonlinear (manifest in the damage mapping S),
the DTRS equilibrium may not achieve the solution to (2). Therefore, one can guarantee neither that the equi-
librium under the TRS is equivalent to that under the DTRS, nor that either system delivers the socially opti-
mal vector of emissions. Whether these difficulties are significant in practice is an empirical question to
which we turn in section 6.

3. The Trading-Ratio System (TRS)

We begin by sketching the main elements of the TRS. For further details, the reader should consult Hung
and Shaw [2005]. As in that paper, number the zones (and the sources) so that i =1 indicates the most
upstream source and N the most downstream, where indexes on two branches above their confluence,
though important for bookkeeping purposes, have no ordinal relationship to each other. (With one source
per zone, the i and m indexes coincide.) Let the transfer matrix be T={r;}, where 7; measures the water-
quality impact of pollution from zone i upon concentration at zone j. Given the unidirectional flow of a river,
T has a special characteristic: for any m and n with m > n, or for zones on different branches, we must have
that 7,,,=0. Following Hung and Shaw, we assume that each source influences its own zone in a unitary
fashion: 7;=1 for all /.

Under the TRS, the allocation of tradable discharge permits begins at zone 1 and proceeds from there on
down the stream, ensuring along the way that the concentration standard X; is met at each zone. This
means that downstream sources may receive few permits or no permits in the initial allocation. This makes
good economic sense, in that an efficient outcome should “fill the river” with pollution up to the standard
at each receptor. Failing to do this will lead to higher aggregate abatement costs.

Given a vector X of zonal concentration standards from (1), the TRS regulator uses the t; to allocate zonal
permits Z so that the standards are met if no trade occurs. Define Z;=X; and, for j>1, define
Zj:)?j—zjl,;l 7;Z;. It is possible that, for a given j, we might find that 7;_;);X;—1 > X;. That is, the level of
pollution arriving from upstream when the standard is exactly met there exceeds zone j's standard even if
e;= 0. In this case, zone j is called a critical zone. The TRS allocation scheme sets Z;=0 and, in turn, reduces
the allocation of permits to the upstream zone (or, possibly more than one upstream zone) to the point at

which zone j is no longer critical: Z;_4 =()_(j/r(j,1),-)—zlkj1 Tj-1Zk-

This allocation scheme ensures that the water-quality impacts of all upstream zonal standards on a given
zone are accounted for via the upstream transfer coefficients. Note that in using the TRS procedure, the reg-
ulator takes as given the set of zones {i}, the zonal environmental standards X, and the transfer coefficients
T. Each discharger is then allowed to trade freely in a watershed-wide permit market according to the trans-
fer coefficients T, so long as its emissions do not exceed the permits it holds.

Formally, each source i solves:

MiN e, Gla)=pira+ ) Pyt (42)

S _ i1
S.t.Z,‘ > (e;—rk;)—zj:1 Tjiljis (4b)
ai=ryi+rs, (40)

n
r":Zj:m s (4d)
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Ikis Isiy I > 0, (4e)

where p; and p; are the market prices of permits from sources i and j, r; is the amount of pollution control
purchased from source j to offset pollution at source i, ry; is the amount of pollution control from source i
that is kept by source i to meet the zonal standard Z;, and r;; is the amount of pollution control sold by
source i. As Hung and Shaw observe, the TRS possesses two advantages over earlier trading schemes. The
first is that each discharger must participate in only a single watershed-wide permit market, so that transac-
tion costs are low. (Contrast this feature with the ambient-permit system of Montgomery [1972], where each
polluter must hold permits for each of the receptor markets it affects.) The second is that the regulator allo-
cates initial zonal discharge permits Z in such a way that the ambient environmental constraints X are satis-
fied exactly at the initial allocation.

One can rewrite (4b) to obtain Hung and Shaw’s trading constraint (their equation (5)):

e <Z +Z il — Zl iq T (5)

where r; is the net amount of zonal discharge permits sold by source i to source j. This constraint means
that any discharger can buy permits only from upstream zones and sell permits only to downstream zones.
Because sources can trade permits at exchange rates tj in any TRS equilibrium (including the boundary
case), for any j > i, the two permit prices must satisfy

TjiPj=Ppi- (6)

The economic implications of this equality are substantial. If a high-cost source is located upstream of, or on a
different branch from, a low-cost source, because ;=0 for i > j this constraint strictly prohibits trade between
them even if the trade would reduce costs. This might seem justifiable at first on the grounds that water flows
downstream, so that any downstream pollution reduction or a reduction on a different branch has no effect
on the concentration at the upstream location. However, if damages are nonlinear the downstream marginal
damages of pollution from the high-cost (upstream) source can be comparable to those of the low-cost
(downstream) source. In this case, increased abatement by the low-cost source in exchange for decreased
abatement by the high-cost source might be Pareto improving. But this trade is infeasible under the TRS
because of its prohibition on cross-branch or upstream sales, and so the TRS can fail to achieve the least cost
outcome. We shall return to this point in section 6 when presenting the results of our numerical work.

We now turn to the main result of this section. The question is whether the TRS equilibrium is guaranteed to
achieve the cost-effective outcome a™. Proposition 1 shows that the answer is no. There are situations, perhaps
not unusual in actual practice, in which the outcome of the TRS is either indeterminate (the permit-allocation
scheme breaks down) or not cost effective (it fails to solve program (1)). All proofs appear in Appendix A.

Proposition 1. Consider a river system in which there exists a critical zone at the confluence of upstream
branches. Then the TRS permit-allocation scheme is indeterminate. The TRS equilibrium is not guaranteed to
achieve the cost-effective solution to program (1) unless the regulator knows the cost functions of at least some
upstream sources.

Proposition 1 implies that the TRS cannot always be relied upon to deliver the cost-effective outcome even
if the ambient environmental constraints, the X, are set optimally. One might ask whether the given condi-
tion, in which a critical zone lies at a confluence of branches, is likely to be met in practice. We believe it is
not at all unusual. In a branching river, confluence zone m is critical if Z )_(m 1, > Xm,» Where
{m—1;}, is the collection of indices directly upstream of zone m, along all contrlbutlng branches. Economic
activity and population both tend to concentrate around the confluence of rivers. The water quality there is
often important for both aquatic species and people living nearby. Thus, a zone of confluence might be
more likely than others to be critical.

4, The Damage-denominated Trading-Ratio System (DTRS)

We turn now to an examination of the Farrow et al. DTRS. The fundamental regulatory constraint in the
DTRS is a single limit on aggregate monetary damages, here denoted TD, rather than a set of physical
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environmental standards. Hung and Shaw’s TRS is deeply concerned over hot spots, but, given the exoge-
nous nature of the vector of standards, ignores damages. The DTRS, on the other hand, is deeply concerned
over damages but is concerned with hot spots only to the extent that damages are high in some places
along the river. The DTRS trading ratios are themselves based upon marginal damages, rather than upon
physical transfer coefficients. Each source i's marginal damage d; is calculated by integrating its contribution
to monetary damages over that source’s “zone of influence.” Having calculated marginal damages for each

source, the regulator distributes permits L; (in terms of emissions at the point of discharge) in such a way
that aggregate damages meet the overall monetary constraint at the initial allocation: Zidi[,:ﬁ. Trade is
allowed between any two sources, but at the ratio of their marginal damages. The aggregate limit on dam-
ages will be satisfied in the face of any permissible trade at these ratios.

Given the vector d of marginal damages and a vector e of emissions, Farrow et al. (and also Muller and Men-
delsohn [2009]) assume that aggregate damages are linear: D(e)=z7z1 die;. It is this quantity that must
not exceed TD. The assumed linearity of the damage function means that each d; is independent of emis-

sions from other sources.

Each source i solves the following cost-minimization program:

min . v v Cf(ai)—Pifsi"‘Zijrﬁv (7a)
_ 4
s.t. (e,-frk,-)*zj gl = Lj, (70)
1
a=rq+rs, (7c)
iy Isiy I'sj > 07 (7d)

where p; and p; are the market prices for permits from sources i and j, rj; is the amount of pollution control
purchased from source j to offset pollution at source i, ry; is the amount of pollution control from source i
that is kept by that source to meet its emissions standard L;, and ry; is the amount of pollution control sold
by source i.

Note that substituting e;=e;—a; and ry;=a;—rs into (7b), one obtains an analog of (5), the Hung-Shaw trad-
ing constraint:

_ d;
e < Li+2jj"/’i_rsi~
1

This constraint means that each source can trade with any other source, according to the marginal damage
ratios, so long as the level of its discharge does not exceed the sum of the original discharge limits L; and

the net purchase of damage-denominated permits Ej(d,—/d,-)rsj—rs,-. Because sources can trade permits at

the exchange rates d;/d;, the spatially explicit prices of permits in equilibrium (including the boundary case)
satisfy the following analog of (6):

q

d pi=pi- 8)

Note that unlike in the TRS, one can be sure that d; # 0 in practice for all i: a source for which d; = 0 would
not be part of the trading system. Therefore, each source can trade with any other source, including those
located upstream or downstream or on different branches of the river.

Farrow et al. derived the first-order necessary (and sufficient) conditions for each source’s optimization
problem, from which the following interior equilibrium condition is derived:

== 9)

In fact, in equilibrium the right equality in (9) (and therefore also (8)) must be satisfied for every pair i and j,
not just those who actually trade. Unlimited arbitrage opportunities would arise if it were violated for any
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pair. To see this, note that if (8) does not hold, say, if p;/d; > p;/d;, then any source k who buys permits
from j and sells them to i can secure such profits. But this cannot be an equilibrium with a finite supply of
permits.

Take as given a vector of baseline emissions &, a vector of initial permits L, and a vector of trading ratios d.
The complete characterization of the Farrow et al. equilibrium conditions is given in (10a)-(11c). These
expressions, which we use in our numerical example, are stated for completeness. Thus, we provide only
a sketch of their derivation. The first set, equations (10a)-(10c), characterize an interior equilibrium. Letting
Ri(pi) denote i's abatement decision function given p; we have

a; =Ri(p;), (10a)

> dilei—Ri(p})~Li]=0, (10b)
pi_P ¥

4 d foralli,j. (100)

Equation (10c), which like the right equality in (9) serves as a no-arbitrage condition, ensures that each
source i faces the same effective price in all zonal markets j: p;=p;(d;/d;). Source i is therefore indiffer-
ent from which sources it buys permits or to which sources it sells. It follows that source i abates such
that C,(a,-):p,. Because C/i(a,) is strictly increasing, the interior optimal abatement a; is unique. Thus,

pi=pj(di/d) for all j.
} , while
ij

d.
Equations (11a)-(11c) characterize the vector of equilibrium traded quantities, {r,’(‘,,rs*,,zj jrj’ﬁ
accounting for the relevant corners: !
Li if e—Ri(p;) <L
;:{ ’ (11a)

0 if &—R(p))>L;

(11b)

N

. Zi_éi+Ri(p7) If é,_R,(p,*) S [,-
ro= o,
0 if é,‘*R,‘(p;() > L

0 if &—Ri(p}) <L

_ _ (110
é,‘*R,‘(p?)*L,' if é,*R,(pl*) > L

%9
i d; 7
Source i's excess demand function may be obtained as follows. Given p;, source i would choose abatement
R; so that C';=p;. Thus, R; is a well-defined function. The excess demand for permits from source i is
zi(pi; e, Li)=e;—R;(p;))—L,. If >0, then i must buy permits. If z;< 0, it sells its excess permits. All permits
sold to and purchased from i must be exchanged at the ratio d;/d; with permits from any source j. This
means that the common units of exchange are d;z;, and so the market clears in equilibrium if equations
(10a)-(11¢) hold. For a given vector {e;,L;, d;}; and n sources, this gives us n equations in n unknown prices
{p; };- Thus, the equilibrium is exactly identified.

This characterization of market equilibrium turns out to be useful for the simulations in section 6. There
may be nontrivial boundary equilibria in which a;=0 or a; =e;. These boundary cases can be dealt with by
defining Ri(p;)=0 if C;(a;) > p; for all a; € [0,&;] and R;(p})=¢; if C(a;) < p; for all a; € [0, &]. The rest of
the equilibrium conditions are intact.

Our next result is analogous to Proposition 1. The question is whether the DTRS equilibrium is guaranteed
to achieve the solution to program (2) if damages are nonlinear. Proposition 2 shows that the answer is no.

Proposition 2. Suppose that aggregate environmental damages are a nonlinear function of pollution concen-
tration, so that at the cost-effective solution e™H we have

oD(efH)
FSCH FSCH
D(e™") # E i oe, e .

Then the DTRS equilibrium does not achieve the cost-effective solution to program (2), even if the d; are eval-
uated at the optimum.
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Because Farrow et al.'s system assumes linear damages, the result that the DTRS breaks down in the face of
nonlinear damages is perhaps not surprising, though it has not evidently been noted before. More surpris-
ing is that with nonlinear damages the DTRS fails to achieve the cost-effective solution even if the regulator
evaluates the trading ratios at the efficient allocation. The DTRS equilibrium can get not only the price
ratios, but also the aggregate market-clearing condition, wrong. Whether this is significant in practice is an
empirical question.

As is evident from the proof, the difficulty with the DTRS stems from the fact that the initial allocation of
permits follows Farrow et al.’s original allocation rule (A1). A natural question arises: what would happen if
one were to use a different allocation rule? For example, the regulator could allocate permits so that
D(Ly,...,L,)=TD. Here one encounters an insuperable difficulty: there is no allocation rule the regulator
could rely upon in this case. Indeed, the problem is similar to that of the TRS. To see this, suppose that the
regulator agreed upon the desired level of aggregate damage, TD. Because the damage function is nonlin-
ear, there will inevitably exist many vectors L such that D(Ly,...,L,)=TD. The regulator’s problem is inde-
terminate. (Recall that D is the composition function D(e)=S5(Te).)

In the following section, we investigate how the TRS and DTRS perform, relative to the efficient solution as
well as to each other, if the initial allocation of permits follows such a rule.

5. Equilibrium Comparisons

Given the performance of the TRS and the DTRS, respectively, in the face of branching and nonlinear
damages, a natural question is whether it is possible to say which of the two is preferred, based
either on theoretical arguments or on empirical evidence. In this section, we explore this question the-
oretically, always bearing in mind that empirical considerations in any given situation will likely be
decisive.

The comparative question really does matter, for at least two reasons. One is that, as we have shown, the
initial allocation of zonal standards under the TRS is indeterminate in the presence of branching. The initial
allocation of permits under the DTRS is indeterminate in the presence of nonlinear damages. One would
like to know whether either of these difficulties is cause for concern and, if so, which is the greater. The
other is that the informational requirements in applying the two schemes might appear to be different: the
DTRS incorporates information on damages while the TRS does not. We will see that, in fact, the information
needed to deploy either scheme is the same.

Proposition 3 shows how the TRS and the DTRS can both be derived directly from the efficient program
found in (3). Thus, the two alternatives can be compared on the same efficiency grounds within our
framework.

Proposition 3. Under the conditions imposed upon the C; and D, the following are true:

. . . . . weff . . .
1. Given the efficient solution a®", there exists a constraint vector X° in terms of pollution concentrations such

. . weff . )
that the solution a™ to program (1) subject to X" s the optimal solution a*; and

. . . . . —eff .
2. Given the efficient solution a®", there exists a constraint value TD®" in terms of total damages such that the
. . —eff . . .
solution a™™ to program (2) subject to TD®" is the optimal solution a®.

Proposition 3 establishes the practical equivalence of the two cost-effective programs in a situation in which
the regulator has perfect knowledge of T and D. (Note that in order to achieve the social optimum the by
either system, the regulator must also know the Cj(g;).) In that case, it does not matter whether the policy is
constrained by X or by TD. Suppose, though, that the regulator has imperfect information on one of these
elements. Even if there is no branching and damages are linear, the informational requirements of the two
trading mechanisms are quite different. A regulator wishing to implement the TRS must estimate the trans-
fer coefficients in T while a regulator wishing to implement the DTRS must estimate the damage coeffi-
cients, the d;. Thus, for our comparative work, we must define the requisite policy choice for a regulator
who wishes to achieve e in each system. Under the TRS, the regulator must select zonal environmental
standards at the efficient levels: X *=Te®. Under the DTRS, the regulator must constrain total damages at
the efficient level: ﬁFB=D(eeff). Let us call any distribution of permits consistent with X" under the TRS, or
TD'® under the DTRS, the “first-best” allocation.

KONISHI ET AL.
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Given our Proposition 3, we shall employ the following criterion for judging which of the two schemes out-
performs the other.

Derinimion 1. Given two feasible abatement vectors a and a, say that a is at least as efficient as a’ if
> Cia)+D(e-a) <) C(d)+D(e-a).

To prepare for our final results, we first establish that the TRS equilibrium achieves the efficient outcome, if
it achieves it at all, with no trade. To see this, consider a branchless river system. Note that as in the proof of
Proposition 3, the efficient environmental constraints are found by setting feff:T(é—aeﬁ). Then as Hung
and Shaw show, in a branchless river the constraint set arising from Z is equivalent to that arising from X
and the TRS equilibrium achieves the cost-effective outcome. But because the cost-effective outcome must
coincide with the efficient outcome, which also coincides with the initial allocation, and because it is
assumed that there is only one discharger in each zone, this implies that discharging pollution so as to sat-
isfy Z exactly, without engaging in any trade, is also cost-minimizing. Put another way, the regulator cannot
implement the efficient optimum in a decentralized manner. This claim, whose proof is obvious and so is
omitted, is stated in the following result.

Proposition 4. Suppose that in program (1), the zonal environmental constraints X are set at the efficient levels
and that there is only one discharger in each zone. Then if the TRS trading achieves the cost-effective optimum
of program (1), it is achieved with no trade.

The next result follows in a straightforward manner from Propositions 1, 2, and 3, and so the proof is
omitted.

Proposition 5. Suppose the regulator allocates permits in the first-best manner. Then the following are true:

1. If the watershed is characterized by a branchless river but a nonlinear damage function S, the equilibrium
under the TRS scheme is at least as efficient as that under the DTRS scheme.

2. If the watershed is characterized by a branching river but a linear damage function S, the equilibrium under
the DTRS scheme is at least as efficient as that under the TRS scheme.

This result may come as a surprise. Why can the DTRS not outperform the TRS when environmental dam-
ages are nonlinear, even though the DTRS incorporates some information about variation in marginal
damages whereas the TRS does not? The answer is precisely that when the regulatory benchmark is the
efficient outcome, the regulator must commit herself to an initial allocation of permits that meets the
constraints X ° (for the TRS) or TD'® (for the DTRS). The difficulty with the DTRS when damages are non-
linear is with the dependence of the d/s upon the entire vector of emissions. The price signals offered by
the physical transfer coefficients under the TRS, which are independent of abatement decisions, are con-
sistent with the first-best outcome. The price signals offered by the variable damage coefficients, the d’;,
are not.

In practice, even a perfectly informed regulator might face informational or political constraints that drive
the allocation of permits away from the first-best allocation. Selecting a useful criterion for comparison
becomes more difficult in this case. The reason is that, as may be seen in (A3), when damages are nonlinear
it can be the case that the realized damages at a DTRS equilibrium actually exceed the constraint value of
TD that generated the permit allocation. Thus, just how one chooses the appropriate “second-best” stand-
ards, X% or ﬁSB, so as to allow a legitimate comparison between the TRS outcome and the DTRS outcome
is not at all obvious. The TRS equilibrium is sure to produce the desired level of damages, but the DTRS
equilibrium is not.

A reasonable alternative might be to compare equilibria given an initial allocation of permits. Assuming that
there is one discharger in each zone, and that t;=1 for all j as in section 3, specifying the initial allocation in
terms of zonal standards X under the TRS is equivalent to specifying the initial allocation L under the DTRS.
Permits would then be allocated at X" =L"" so that

SX*)=D(L") # D(e*).
In this case, we would be comparing the performance of the two trading systems relative to a no-trading
baseline. The following result offers some evidence that the comparison leans more in favor of the DTRS
than the TRS.

KONISHI ET AL.
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Proposition 6. Suppose the regulator allocates permits in a second-best manner. Then the following are true:

1. If the watershed is characterized by a branchless river but a nonlinear damage function S, the equilibrium
under the DTRS scheme can be more efficient than that under the TRS scheme; and

2. If the watershed is characterized by a branching river but a linear damage function S, the equilibrium under
the DTRS scheme is no less efficient than that under the TRS scheme.

A caveat is in order. One may be tempted to interpret this result as saying that the DTRS dominates the TRS
under this second-best condition. However, that interpretation could be misleading. First, it seems implausi-
ble that the regulator would be able to choose d/'s with sufficient accuracy to ensure that equation (A4) are
satisfied. Second, many river systems are likely to be characterized by both branching and nonlinear dam-
ages. We need to examine the relative performance of the two systems when both properties are present.
The following section uses a numerical model to explore this question.

6. A Numerical Model

In this section, we develop and solve a small numerical model aimed at providing an answer to this question:
which of the systems, TRS or DTRS, performs better, relative to each other and to the efficient outcome, when
river systems are characterized by both branching and nonlinear damages? Our answer comes in two forms.
One is that neither system dominates, and that which performs better depends on the distribution of firms’
abatement costs. The other is that even in the presence of both branching and nonlinear damages the TRS
and the DTRS perform well so long as the total quantity of permits issued is close to the optimal level. Getting
prices right (that is, setting the correct trading ratios) is much less important than getting the quantity right.

For purposes of this numerical exercise, we suppose that a regulator knows the damages caused by water
pollution. She also knows enough of the science to be able to specify the transfer coefficients correctly. The
regulator is imperfectly informed about abatement cost functions, however, and so cannot compute the
socially optimal vector of emissions. Put another way, our regulator is unable to set either X (for the TRS) or
TD (for the DTRS) at the efficient levels. We start out, though, by giving our regulator a helpful nudge. That
is, we set the total number of permits equal to the socially optimal level. Any divergence between the social
optimum and the outcomes of the TRS or the DTRS, then, cannot be due to getting the quantity of permits
wrong. It must be because the trading schemes provide incorrect price incentives. At the end of the section,
we consider the added inefficiency that results from an incorrect quantity of permits.

The details of our numerical model are adapted from the U.S. Environmental Protection Agency (U.S. EPA)'s
[2002] tool for modeling water-quality impacts, the NWPCAM, which is also the basis for the empirical applica-
tion in Farrow et al. [2005]. Let x,,,; be source i's contribution to the pollution concentration at location m down-
stream. Then x,,; is a function of the emissions e; at source j, stream flow Q, and an exponential decay term:

x,,,,:%exp (*I?&m,), (12)

with x,,; = 0 if m is upstream of i. In (12), which simplifies the Farrow et al. version slightly, k is the decay
parameter and d,,; is distance in river miles. The pollution concentration at location m is the sum of contri-
butions from all upstream sources: xm:Zixm,». This model can incorporate branching in the river. If two
sources, i and j, are located along two different branches upstream of a confluence, the impacts of emis-
sions from i and j on concentrations at location k below the confluence are simply x,; and x;. In this frame-
work, the effect of changes in concentration at location i on concentration at any downstream location j is
linear:

Tj = — =exp (—kdj), (13)

where the 7;; are the transfer coefficients.

In order for our model to capture the effects of interest, it must be able to accommodate both nonlinear
damages and critical zones where branching occurs. The latter is straightforward, but the specific form of
nonlinearity is crucial and requires a bit of explanation. Consider first the linear specification of damages
found in Farrow et al, who assumed that marginal damages are constant at each location:

KONISHI ET AL.
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OD/0%m=WTPXH,,, where WTP is the constant per-capita marginal damages from changes in water quality
and H,, is the population at location m. According to this specification, damages from each source’s emis-
sions are given by D;(e;)=d;e;, where d; is constant and independent of e;:

M 1
di=zm:1WTP><Hm><rm,-><6.

To justify the constant marginal willingness to pay (WTP), Farrow et al. [2005, p. 197] argue that water qual-
ity is inversely related to pollution concentrations and that “the household marginal willingness to pay for a
small improvement in water quality, WTP, is constant ... over the range of water-quality conditions consid-
ered in this study.”

Linearity may often be a reasonable assumption, but we argue that there are important cases where it is
not. One source of nonlinearity is curvature in the biology or chemistry of aquatic systems. The relevant sci-
ence, including that for fish and for algae, indicates that the underlying biology can be nonlinear as a func-
tion of water quality [see Elliott, 2000; Schnoor, 1996; Anderson et al., 2002]. In such cases, economic
damages may be expected to be nonlinear too.

The effect of thresholds can also be important. In many watersheds in the U.S., water quality is already
impaired, so that a further increase in pollution concentrations might drive conditions above a particular
concentration threshold. Indeed, our communications with water practitioners and policymakers reveal that
their primary concern is often related to this nonlinear biological response around hot spots. This concern is
one of the important political factors that has plagued water-quality trading in many watersheds. Under-
standing how a trading scheme performs in the face of nonlinearity, we argue, is essential.

To model the nonlinear biological responses that allow for the type of threshold effects highlighted above,
we consider a logistic damage response to pollution concentrations at each location m:

b
1+exp (—a(xm—c))

Sm(Xm)= forallm=1,... M, (14)

where a is a damage-sensitivity parameter, b a scale parameter, and ¢ a concentration threshold. The total
economic damages are then given by D(e)=zm5m(xm). Logistic models are commonly used in biology
and ecology for modeling the response of species’ mortality or population size to pollution. Though in biol-
ogy, the parameters a and c often depend on a variety of environmental factors, for simplicity of analysis
we treat them as constants that do not vary by time or location. The parameter b is a scaling parameter that
transforms biological damages into monetary economic damages, which we also assume are constant. With
these assumptions, marginal aggregate damages with respect to emissions from any source i depend not
only upon emissions from that source but also upon emissions from other sources, both downstream and

upstream of i (that is, 8D/6ei=2m(GSm/(’)xm)(Oxm/ae;)). When there is a branch in a river system, mar-
ginal damages also depend on the emissions from sources located along the other branches.

The parameter values of the model can vary widely by pollutant and watershed. Because our goal is to
obtain generic efficiency properties of the two trading systems, we decided to choose representative
parameter values for the water-quality model (12) and then choose a set of parameters a, b, and c that
generate interior optima for at least two out of three sources given the assumed cost parameters (see
below). The value of k=0.005 is chosen based on three parameters: the mean of the decay rates for
seven representative water pollutants [U.S. EPA, 2002], the average water temperature of 20°C, and the
stream velocity of 1.5 miles/h. The scale parameter b and the threshold parameter ¢ are important in
generating interior solutions. We thus started with arbitrary values a=5 and ¢=5 and then searched
for the associated value of b. The parameters used for the simulation are summarized in Table 1.

6.1. Simulation Scenarios

We assume that the river has a main stem M and a single branch B. The river has a maximum length of
200 river miles along the main stem (m™ € [0,200]) and 50 river miles along the branch (m? € [0,50])
above a confluence at mM=100 (or at m®=50). There are three polluting sources. Source 1 is located in
the most upstream point of the main stem (m"=0), source 2 at the confluence (m"=100 or mf=50), and
source 3 at the most upstream point of the branch (see Figure 1). There is one pollution source i in each
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zone i, as in Hung and Shaw [2005]. Thus

Table 1. Parameters for Water-Quality Model .
there are three zones, each zone facing zonal

Parameter Units Value R . .
: environmental standard X; and receiving
k Decay rate mile™ 0.005 5 T .
0 Stream flow f/s e zonal permits Z;=L;. The firms have quadratic
a Damage parameter None 5 abatement cost functions of the form
b Damage-scale parameter None 6.7 )
c Concentration threshold mg/L 5 as
C,-(a,-)=;’7 (15)
i

with a; € [O, é,‘] and a; > 0.

Given the transfer coefficients as in (13), the damage function in (14), and the cost functions in (15), we first
compute the socially optimal vector of emissions, e*f. Again, our regulator does not know cost functions,
and so cannot solve for this optimum. A fair comparison of outcomes of the TRS and the DTRS to the opti-
mum, though, requires that we set the total number of permits at the optimal level. The optimal total is
then allocated equally across the three sources: L, =[2=Z3=Z efff/3. This choice of an initial allocation is
only one of an infinite number of possibilities, but it has the advantage of reflecting equal required reduc-
tions in the absence of trade.

Under the TRS, this means that zonal environmental standards, the X’s, are allocated so that
X1:[1, X3:[3, and X2:Z2+T12X1+T32X3.

We chose this allocation rule for two reasons. The first is that we are interested in the relative performance
of the two trading systems under conditions that can be compared to the social optimum. The second is
that, were we instead to allocate permits so as to ensure that water quality is equal in all zones, by design
we would have a critical zone at confluence zone 2. This would mean in turn that the problem of indetermi-
nate allocation would arise (see Proposition 1).

Under the TRS, the correct transfer coefficients are known to the regulator and are announced to the pollut-
ers. Under the DTRS, the regulator does not know the social optimum, and so she evaluates the d;'s at the
initial allocation. In each of these setups, we simulate the trading outcomes for two sets of cost parameters:

CaseA: o1=7.5, o;=15 «o3=7.5 and
Case B: o;=15.0, o,=7.5, wo3=15.0.

For each case, we also compute the social costs at the initial allocation of permits, as the no-trading base-
line. These two cases represent only a fraction of the infinity of possible arrangements, but they do provide
some useful insights.

6.2. Simulation Results

Case A. In this case, a low-cost firm is located downstream of two high-cost firms. At the socially optimal out-
come, the low-cost firm (source 2) abates completely while source 1 emits more than source 3 even though
they have the same marginal costs and the same baseline emissions (Table 2). This occurs because marginal
damages at the optimum increase more in source 3’s emissions than in source 1's emissions. Recall that the
TRS mechanism precludes upstream sales and trade across branches. Because the potential seller (the low-cost
firm 2) is located downstream, that source cannot trade at all. Moreover, the socially optimal trade between
the two upstream firms is also precluded. As a result, firms incur higher abatement costs under the TRS than at
the optimal outcome. On the other hand, the DTRS does allow trades among any of the three sources. Because
of this, the DTRS performs substantially better than the TRS (and therefore, the no-trading baseline).

A difficulty with the DTRS, however, is that in our simulation the d; do not appear to be good approxima-
tions to the assumed marginal damages at the optimum. This point is demonstrated in Figure 2, which plots
marginal damages as a function of each source’s emissions, holding other sources’ emissions at the opti-
mum. Figure 2 also shows each source’s marginal cost and trading coefficient. The social optimum occurs
where each firm’s marginal damages are equated with its marginal cost and the overall constraint is satis-
fied. Interestingly, the equilibrium does not occur where each source’s marginal cost equals its trading coef-
ficient d,. This is because each source makes its abatement and trading decisions so that its marginal cost
equals the spatially explicit price it faces, p;=(d;/d;)p;. Thus, when the d/'s do not closely approximate actual
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Case A Case B marginal damages,
the trading outcome
under DTRS may not
equate marginal dam-
ages with marginal
costs. In actual prac-
tice, of course, it might
be true that damages
are nearly linear, so
that the DTRS is more
nearly optimal than in
our example.

Note also that in the
DTRS equilibrium the
sum of emissions can
exceed the sum of ini-
tial emissions permits:
Z PR > Z e,

This is because neither
the individual pollut-
ers nor the equilibrium market-clearing condition are constrained by » ~e”™ <> "¢, In the DTRS, the
common unit of exchange is d;e; rather than e; itself. Thus, the discipline imposed on the equilibrium is that

100 100

Figure 1. Hypothetical river system.

Zd,-e,DTRS < Zd;[;. Because sources can emit more than the socially optimal total, environmental dam-
ages are higher, but abatement costs are lower, at the DTRS equilibrium than at the social optimum. Lastly,
note that Figure 2 illustrates that with nonlinear damages the first-order conditions are not sufficient. In the
top right plot, we see that the marginal damage curve for source 3 crosses its marginal cost curve twice.
Also, though not plotted, each source has infinitely many marginal damage curves corresponding to differ-
ent emissions levels by other sources.

Case B. In this case, a high-cost firm is located downstream of two low-cost firms. At the social optimum,
source 3 abates all of its emissions while source 2 emits the most (Table 2). Efficient trades should occur
under the TRS, because this system allows the high-cost downstream source to buy permits from the two
low-cost upstream sources. Indeed, this is exactly what happened in the simulation. Each firm is allocated
18.5 units of discharge permits initially in both the TRS and the DTRS. In the TRS equilibrium, firm 2 bought
14.4 units from source 3 to increase its emissions to 32.9 while firm 3 sold 18.5 units at the trading ratio 13,
~ 0.78 (i.e., 18.5X13,=14.4 units for source 2). Note that under the TRS, the downstream firm has a choice
of buying permits from either source 1 or source 3. Therefore, source 2 buys from the partner with the low-
est effective permit price.

It follows then that the effective equilibrium prices are equalized across space: p; =112 =13p2=p3. At this
equilibrium price, source 1 has no incentive to sell its permits to source 2 and thus ends up emitting exactly
at the initial allocation. The trading out-
come in the DTRS is similar. Source 3

Table 2. Simulation Results abates completely and sells its permits

Outcome e e. e Damage Cost Total .
! g 2 J mostly to source 2. A difference occurs,

Capa though, because source 3 also sells its

No trade 237 237 237 511 1942 2454 >

TRS 237 237 237 511 1942 2454 permits to source 1. As we have noted,

DTRS 489 00 344 530 1589 2119 under the DTRS firms located in differ-

Opiimuim 420 @O 220 bC [ZEA ent branches are allowed to trade, and
Case B R . .

Notrade 185 185 185 10 17 1782 the  equilibrium  prices  satisfy

TRS 185 320 0.0 10 1710 1720 p1=(dy/d2)p2=(d1/d5)ps. It turns out

DIE s dile o ® e 1722 that at these equilibrium prices, it is

Optimum 210 345 0.0 42 1655 1697

cheaper for source 1 to buy permits
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Case A: ay =7.5,a, =15, a3 =7.5

— MD;
30 —MC, 1 30t —MDy | 1 30} /\ .
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— d2
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— ds
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€1 € €3
Case B: a; =15, a3 =7.5, a3 = 15
— MDq — MDg
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— di — ds
20 . 20 . 20 - .
10 . 10 . 10 .
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Figure 2. Marginal damages, marginal costs, and trading coefficients. Top plots: Case A (a; = 7.5, a, = 15, az = 7.5). Bottom plots: Case B (a; = 15, a, = 7.5, as = 15). Horizontal axis

measures emissions for each source, with other sources’ emissions held at the efficient levels.

from source 3. As a result, source 1's equilibrium emissions are slightly higher under the DTRS than under
the TRS while source 2’s equilibrium emissions are lower under the DTRS than under the TRS. The extra
trade between source 1 and source 3, however, decreased efficiency slightly compared to the TRS equilib-
rium. This is because the damage-denominated trading coefficients, the d’s, are poor approximations of the
true marginal damages at the optimum, as shown in Figure 2. In this case, therefore, the DTRS encouraged
inefficient trades. Note, however, that both TRS and DTRS reduce deadweight loss relative to the no-trading
baseline, and closely approximate the social optimum in this case.

6.3. Prices Versus Quantities

On one hand, our numerical analysis suggests the impossibility of getting prices right in watersheds with
branches and nonlinearities that significantly influence marginal damages. Neither the TRS nor the DTRS
succeeds in providing the correct price signals. On the other hand, our analysis also indicates that in some
cases the equilibria approximate the social optimum quite closely. We obtained these results by setting the
total supply of permits equal to the socially optimal level. A natural question then is, which causes the
greater efficiency loss: not getting the quantity of permits right, or not getting the price of permits right?
We investigate this question by simulating the trading outcomes for varying levels of the total supply of
permits (in percentage reduction from the baseline discharge level) and again allocating permits in equal
number to each discharger.

In order to make the relevant comparison, we compute two measures of efficiency loss. Let a’ (A) denote
the equilibrium abatement vector that emerges under trading scheme T, which can be either the TRS or the
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DTRS. In either case, the equilibrium is subject to the constraint that ZZ,:A for some value A. The first
measure is efficiency loss when the quantity of permits is correct, that is, equal to the sum of efficient emis-
sions levels. It is given by

Lot (€@ (> ef)+D@ (> ) —[C(a)+D(a")] |
[C(a*)+D(acf)]

(16)

The first term in the numerator is social cost after trading when the total number of permits is equal to the
efficient level of total emissions. The denominator is social cost at the efficient outcome.

The second measure is the maximum efficiency loss due to misspecifying the total supply of permits, which
is given by

= gy S (A)+D@ (A))] ~[C(a) D] -

0<A<Y e, [C(a=f")+D(a=)]
The results are shown in Figure 3, where the dashed light blue line in the rightmost plots is drawn at the
minimum of C + D. The monetary value corresponds to the efficient level of aggregate emissions, in both
cases about 80% of the initial total. First, the relative performance of the two systems varies, in an unsyste-
matic way, with the supply of permits. In Case A, where a low-cost source is located downstream of two
high-cost sources, the DTRS performed substantially better than TRS when the total supply of permits was
kept to the socially optimal level. This is because the TRS prohibited any trade from taking place. (The
curves with no trading coincide with the TRS curves in Case A.) However, when the total supply of permits
is reduced to 60-70% of the baseline discharge level, the TRS performs better than the DTRS despite the
fact that no trading still takes place under the TRS. This occurs because the efficiency loss due to the TRS
precluding trading was outweighed by the efficiency loss due to the DTRS encouraging inefficient trades,
which increased environmental damages substantially relative to no trade.

In contrast, in Case B, in which a high-cost source is located downstream of two low-cost sources, the DTRS
performed slightly better than the TRS for all levels of initial permit supplies. In this case, TRS and DTRS pro-
vide similar price signals so that the magnitude of the efficiency loss due to environmental damages is simi-
lar between the two systems (see the left plot of Case B in Figure 3). However, because the DTRS offers
more flexibility in trading, it reduces abatement costs a bit more than does the TRS. This effect dominates
the relative performance of the two systems.

Second, total economic costs C+ D do not exhibit a simple convex relationship with respect to the total
supply of permits under the two systems. This is because neither environmental damages nor abatement
cost has a simple relationship to the supply of permits. Despite the fact that environmental damages are
defined as a decreasing function of emissions or pollution concentrations, environmental damages in the
trading equilibrium are not necessarily a decreasing function of the reduction in the total supply of permits,
and analogously, despite the fact that abatement costs are a convex function of abatement levels, total
abatement costs are not necessarily a convex function of the reduction in the total supply of permits. These
effects are especially strong in the DTRS, because the damage-denominated trading coefficients are based
on marginal damages at the initial allocation, and thus depend endogenously on the initial supply of per-
mits. Somewhat counter-intuitively, these trading coefficients can either decrease or increase efficiency rela-
tive to the TRS. On one hand, the trading coefficient can decrease efficiency by providing incorrect trading
margins, which adversely affects environmental damages. On the other hand, however, the trading coeffi-
cients can improve efficiency by providing flexibility for trading partners, which reduces abatement costs.

Lastly, at least in the current model, getting the quantity of permits right appears to be more important
than getting the prices of permits right. In Case A, the estimated efficiency losses, computed according to
equation (17), are only 18.2% and 0.1% of the total economic damages, respectively, for TRS and DTRS
when the socially optimal number of permits is issued. (In Case B, the corresponding results are 3.6% for
TRS and 0.03% for DTRS.) In contrast, the maximum efficiency losses due to misspecifying the total supply
of permits, computed according to equation (17), are 80.9% and 97.8% of the total economic damages,
respectively, for TRS and DTRS. (In Case B, the corresponding results are 80.3% for TRS and 78.1% for DTRS.)
It is important to emphasize that this result is not a direct consequence of the logistic damage response we
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Figure 3. Performance of TRS and DTRS compared. Top plots: Case A (a; = 7.5, a, = 15, az = 7.5). Bottom plots: Case B (a; = 15, a, = 7.5, a; = 15). Horizontal axis measures reduction
in permit allocation as a percent of business-as-usual emissions total.

assumed in (14). Rather it stems from the simultaneous effects of misspecifying the quantity of pollution as
well as the incorrect price signals that arise from it.

7. Discussion

In this paper, we examined the efficiency properties of two recently developed water-quality trading mod-
els, the trading-ratio system (TRS) proposed in Hung and Shaw [2005] and the damage-denominated trad-
ing-ratio system (DTRS) proposed in Farrow et al. [2005]. We showed that neither system is sure to achieve
the cost-effectiveness optimum (and thus the efficient outcome). More specifically, the TRS encounters diffi-
culties when the river has critical zones at a confluence. The DTRS encounters difficulties when damages
are nonlinear. We derived these results under the first-best scenario in which the regulator knows the effi-
cient vector of environmental constraints (for TRS) and the efficient damage constraint (for DTRS). Further-
more, in a second-best scenario where the regulator cannot set these constraints at the efficient levels,
neither system dominates in terms of efficiency, because the TRS excludes efficient trades while the DTRS
promotes inefficient trades. In this sense, our results indicate the impossibility of getting the spatially
explicit prices of pollution right under either system.

Our computational model also contains some encouraging findings: the welfare losses associated with the
two systems are dwarfed by those associated with choosing the incorrect number of permits. Thus, getting
quantities right is more important than getting prices right. The two effects interact in interesting ways,
though. The magnitude of inefficiency due to incorrect price signals appears to depend on the total supply
of permits. Thus our paper suggests the importance of getting the quantity of pollution right even while
striving to get the spatial prices of pollution right.

Our main message, then, is that either scheme can perform well so long as the aggregate supply of permits
is set carefully. We have not provided an alternative scheme that addresses the difficulties we have found.
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That project is left for future work and we believe fruitful work might lie along either of two lines. One is to
investigate empirically the geographic distribution of polluting sources and the degree and nature of nonli-
nearity in environmental damages in actual watersheds, and for key water pollutants. It may be the case
that the concerns raised here are minor in comparison to the benefits conferred by improved water quality.

Second, Antweiler [2012] has developed a powerful iterative approach to permit-trading policy for air qual-
ity. The idea of the scheme is for the regulator to adjust the number of permits issued each period, based
on each polluter's marginal contribution to environmental damages at its current emissions level. As long
as social welfare is globally concave, this iterative process would eventually converge to the social optimum.
Our conjecture is that this iterative scheme could potentially be embedded in either the TRS or the DTRS.
Future studies might investigate the performance of the iterative approach, with any of the three schemes,
for watersheds characterized by both nonlinear damages and branching rivers.

Appendix A: Proofs of Propositions

Proof of Proposition 1. Suppose that e is the solution vector for program (1). By assumption, we must
have a critical zone at the confluence receptor m: Zm—u r<m,1,.)m)7(,,,_11. > Xm, where {m—1;} is the collec-
tion of indices immediately upstream of zone m, along two or more branches. We know that at the opti-
mum, given our assumption that C’; > 0,

Y — HS
Xm_§ :m_hr(m*h)mem—h'

Suppose, without loss of generality, that there are only two zones upstream of the critical confluence, one
on each of two tributaries. Call these zones a and b. By assumption,

v o— HS HS
Xm=Tam€," +Tom€ -

On the other hand, without knowing individual sources’ cost functions, information on e is not available
to the TRS regulator. Therefore, she must, without knowledge of e, allocate zonal discharge load stand-
ards Z's such that Z,,=0 and

Xm=TamZa+TomZsp.

Because there is only one constraint equation for two zonal standards, the allocation is indeterminate. It is
trivial to see that if the TRS allocates Z's in such a way that, for example, e[;'s >Z, and
Zp=Xm—TamZa)/Tom > €}°, then the trading equilibrium can never achieve e"*. Similar arguments apply
when there are more than two upstream zones. This completes the proof. |

Proof of Proposition 2. We offer a proof for the case of an interior optimum of (2). Note that at the interior
optimum, the emission vector e™ must satisfy the necessary (but not sufficient) condition:

OD(eFSCH)/(')e,- B C; (GIFSCH)

ID(eFSH) / de; - C}f(a}:SCH)

foralli,j,

where ef*H=g;—al>". On the other hand, according to equation (9), at an interior equilibrium, we have

di Ci(arseh)
—=——=_< forallij.

i Cj(a>™) ’

Thus, in order for the trading equilibrium to achieve the cost-effective solution, the regulator must evaluate
the exchange rates (the d's) at the optimum: d™"=0D(e™M) /de;. Under the DTRS, the regulator allocates
L’s in such a way that:

Zid,FSCH[i:ﬁ:D(eFSCH)- (A1)

We now ask whether there exists some initial allocation L, satisfying (A1), such that the resulting equilibrium
would achieve the cost-effective solution. We claim that such an allocation does not exist. Suppose, by way
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of contradiction, there exists such an allocation L and that the resulting trading equilibrium is also cost-
effective: eP™®> =@M Because the equilibrium must satisfy the market-clearing condition (10b), we have

Z,‘ dFSHL, = Z; dFSCHEDTRS, (A2)
However, because the aggregate damage function is nonlinear, we have

Z dFSHEFSCH £ p(eFSCH) (A3)

Combining (A1), (A2), and (A3), we see that
Zl_ d[FSCHZi _ Zi dIFSCH e,DTRS =D( eFscH ) # Zi dIFSCH eiFSCH .

FSCH

which contradicts that e®™°=e ™. This completes the proof. [ |

Proof of Proposition 3. To see (i), given the efficient solution a®f, let the constraint vector X" be defined
as

X=1(@-a°fy.
Suppose by way of contradiction that a"* solves (1) subject to X=X", but a" + a°ff. Because D is increas-
ing in x, and because x* =T (&—a°)' =X*", we have

> Ga™)+D(™) < > G(a®)+D(x*) <> G(a®)+D(x"),

where the first inequality follows from a™ # a®f and the second inequality follows because x™ < xeff
implies D(x™) < D(x*f). But this inequality implies that there exists a*f £ a"> such that ZC (asf)
< Z Gi(as) with x="=X"", a contradiction.

The proof of (ii) is analogous, with the constraint value TD" defined as ﬁe“:D(Efaeff). |

Proof of Proposition 6. (i) Let Z* denote the second-best allocation of permits under the TRS and define
=72, In a branchless river, Hung and Shaw’s result applies and so the TRS equilibrium achieves the
solution a*® to the cost-effective program (1) given X*8. By definition, a*® is not the same as a®f. Thus there
exists some abatement vector a’ such that

> G@®)+D®) > > " Gi(d)+D(xX) > > G(af™)+D(x).

On the other hand, an interior DTRS equilibrium satisfies

! (DTRS ) )
Ci(a ):ﬁ:ﬂ7 (Ada)
(! ) .

Zdi[fB:Z dj(éj*G[DTRS). (A4b)

a,DTRS FSCH

Here the notation is distinct from our earlier ;>*" in that the former, employed in equation (A4), may
. =SB _ . .

not solve (2). Now, replace a®™° with a'. It is easy to see that given (L” , e, a ), this system of equations can

be solved for d It follows then that there exists a vector of trading ratios d such that the DTRS equilibrium

arising from (L, &, d) achieves a’.

(ii) Define TD” :S(f ):D(ESB). We know from Farrow et al. that when damages are linear, the DTRS mech-
anism achieves the solution a*f to the cost-effective program (2) given TD"*. On the other hand, there exists
a cost-effective program (1) that achieves a*t. Proposition 1 shows that the TRS scheme may fail to achieve
a’8 if the branching river has a critical zone at the confluence. Now, unlike in part (i), the TRS requires pollut-
ing sources to still obey X*%. It thus follows that

3 Ga®)+Dx™) > 37 G(a”™)+ D)= Ci(a®) +D(x®).

This completes the proof. |
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